Towards natural language interfaces for data visualization: A survey

L Shen, E Shen, Y Luo, X Yang, X Hu… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Utilizing Visualization-oriented Natural Language Interfaces (V-NLI) as a complementary
input modality to direct manipulation for visual analytics can provide an engaging user …

Making data visualization more efficient and effective: a survey

X Qin, Y Luo, N Tang, G Li - The VLDB Journal, 2020 - Springer
Data visualization is crucial in today's data-driven business world, which has been widely
used for hel** decision making that is closely related to major revenues of many industrial …

Beyond the imitation game: Quantifying and extrapolating the capabilities of language models

A Srivastava, A Rastogi, A Rao, AAM Shoeb… - arxiv preprint arxiv …, 2022 - arxiv.org
Language models demonstrate both quantitative improvement and new qualitative
capabilities with increasing scale. Despite their potentially transformative impact, these new …

Can foundation models wrangle your data?

A Narayan, I Chami, L Orr, S Arora, C Ré - arxiv preprint arxiv:2205.09911, 2022 - arxiv.org
Foundation Models (FMs) are models trained on large corpora of data that, at very large
scale, can generalize to new tasks without any task-specific finetuning. As these models …

“Everyone wants to do the model work, not the data work”: Data Cascades in High-Stakes AI

N Sambasivan, S Kapania, H Highfill… - proceedings of the …, 2021 - dl.acm.org
AI models are increasingly applied in high-stakes domains like health and conservation.
Data quality carries an elevated significance in high-stakes AI due to its heightened …

A survey on data collection for machine learning: a big data-ai integration perspective

Y Roh, G Heo, SE Whang - IEEE Transactions on Knowledge …, 2019 - ieeexplore.ieee.org
Data collection is a major bottleneck in machine learning and an active research topic in
multiple communities. There are largely two reasons data collection has recently become a …

Human-AI collaboration in data science: Exploring data scientists' perceptions of automated AI

D Wang, JD Weisz, M Muller, P Ram, W Geyer… - Proceedings of the …, 2019 - dl.acm.org
The rapid advancement of artificial intelligence (AI) is changing our lives in many ways. One
application domain is data science. New techniques in automating the creation of AI, known …

Table-gpt: Table-tuned gpt for diverse table tasks

P Li, Y He, D Yashar, W Cui, S Ge, H Zhang… - arxiv preprint arxiv …, 2023 - arxiv.org
Language models, such as GPT-3.5 and ChatGPT, demonstrate remarkable abilities to
follow diverse human instructions and perform a wide range of tasks. However, when …

[КНИГА][B] Data cleaning

IF Ilyas, X Chu - 2019 - books.google.com
This is an overview of the end-to-end data cleaning process. Data quality is one of the most
important problems in data management, since dirty data often leads to inaccurate data …

How do data science workers collaborate? roles, workflows, and tools

AX Zhang, M Muller, D Wang - Proceedings of the ACM on Human …, 2020 - dl.acm.org
Today, the prominence of data science within organizations has given rise to teams of data
science workers collaborating on extracting insights from data, as opposed to individual data …