Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe
Quantum optimal control, a toolbox for devising and implementing the shapes of external
fields that accomplish given tasks in the operation of a quantum device in the best way …
fields that accomplish given tasks in the operation of a quantum device in the best way …
The potential and global outlook of integrated photonics for quantum technologies
Integrated quantum photonics uses classical integrated photonic technologies and devices
for quantum applications. As in classical photonics, chip-scale integration has become …
for quantum applications. As in classical photonics, chip-scale integration has become …
A race-track trapped-ion quantum processor
We describe and benchmark a new quantum charge-coupled device (QCCD) trapped-ion
quantum computer based on a linear trap with periodic boundary conditions, which …
quantum computer based on a linear trap with periodic boundary conditions, which …
Multi-qubit entanglement and algorithms on a neutral-atom quantum computer
Gate-model quantum computers promise to solve currently intractable computational
problems if they can be operated at scale with long coherence times and high-fidelity logic …
problems if they can be operated at scale with long coherence times and high-fidelity logic …
Multi-qubit gates and Schrödinger cat states in an optical clock
Many-particle entanglement is a key resource for achieving the fundamental precision limits
of a quantum sensor. Optical atomic clocks, the current state of the art in frequency precision …
of a quantum sensor. Optical atomic clocks, the current state of the art in frequency precision …
Quantum science with optical tweezer arrays of ultracold atoms and molecules
Single atoms and molecules can be trapped in tightly focused beams of light that form
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
Advances in magnetics roadmap on spin-wave computing
Magnonics addresses the physical properties of spin waves and utilizes them for data
processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency …
processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency …
Quantum phases of matter on a 256-atom programmable quantum simulator
Motivated by far-reaching applications ranging from quantum simulations of complex
processes in physics and chemistry to quantum information processing, a broad effort is …
processes in physics and chemistry to quantum information processing, a broad effort is …
Efficient generation of entangled multiphoton graph states from a single atom
P Thomas, L Ruscio, O Morin, G Rempe - Nature, 2022 - nature.com
The central technological appeal of quantum science resides in exploiting quantum effects,
such as entanglement, for a variety of applications, including computing, communication and …
such as entanglement, for a variety of applications, including computing, communication and …
Erasure conversion in a high-fidelity Rydberg quantum simulator
Minimizing and understanding errors is critical for quantum science, both in noisy
intermediate scale quantum (NISQ) devices and for the quest towards fault-tolerant quantum …
intermediate scale quantum (NISQ) devices and for the quest towards fault-tolerant quantum …