Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …
models to be trained on client devices while ensuring the privacy of user data. Model …
Blockchain-based federated learning for securing internet of things: A comprehensive survey
The Internet of Things (IoT) ecosystem connects physical devices to the internet, offering
significant advantages in agility, responsiveness, and potential environmental benefits. The …
significant advantages in agility, responsiveness, and potential environmental benefits. The …
Combining federated learning and edge computing toward ubiquitous intelligence in 6G network: Challenges, recent advances, and future directions
Full leverage of the huge volume of data generated on a large number of user devices for
providing intelligent services in the 6G network calls for Ubiquitous Intelligence (UI). A key to …
providing intelligent services in the 6G network calls for Ubiquitous Intelligence (UI). A key to …
A survey on federated learning for resource-constrained IoT devices
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …
model by learning from multiple decentralized edge clients. FL enables on-device training …
[HTML][HTML] Asynchronous federated learning on heterogeneous devices: A survey
Federated learning (FL) is a kind of distributed machine learning framework, where the
global model is generated on the centralized aggregation server based on the parameters of …
global model is generated on the centralized aggregation server based on the parameters of …
Federated learning with buffered asynchronous aggregation
Scalability and privacy are two critical concerns for cross-device federated learning (FL)
systems. In this work, we identify that synchronous FL–cannot scale efficiently beyond a few …
systems. In this work, we identify that synchronous FL–cannot scale efficiently beyond a few …
[HTML][HTML] Secure and privacy-preserving intrusion detection in wireless sensor networks: Federated learning with SCNN-Bi-LSTM for enhanced reliability
As the digital landscape expands rapidly due to technological advancements, cybersecurity
concerns have become more prevalent. Intrusion Detection Systems (IDSs), which are …
concerns have become more prevalent. Intrusion Detection Systems (IDSs), which are …
Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems
The communication and networking field is hungry for machine learning decision-making
solutions to replace the traditional model-driven approaches that proved to be not rich …
solutions to replace the traditional model-driven approaches that proved to be not rich …
FedSA: A semi-asynchronous federated learning mechanism in heterogeneous edge computing
Federated learning (FL) involves training machine learning models over distributed edge
nodes (ie, workers) while facing three critical challenges, edge heterogeneity, Non-IID data …
nodes (ie, workers) while facing three critical challenges, edge heterogeneity, Non-IID data …
Reviewing federated learning aggregation algorithms; strategies, contributions, limitations and future perspectives
The success of machine learning (ML) techniques in the formerly difficult areas of data
analysis and pattern extraction has led to their widespread incorporation into various …
analysis and pattern extraction has led to their widespread incorporation into various …