Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review

H Altaheri, G Muhammad, M Alsulaiman… - Neural Computing and …, 2023 - Springer
The brain–computer interface (BCI) is an emerging technology that has the potential to
revolutionize the world, with numerous applications ranging from healthcare to human …

A review on extreme learning machine

J Wang, S Lu, SH Wang, YD Zhang - Multimedia Tools and Applications, 2022 - Springer
Extreme learning machine (ELM) is a training algorithm for single hidden layer feedforward
neural network (SLFN), which converges much faster than traditional methods and yields …

Deep learning for motor imagery EEG-based classification: A review

A Al-Saegh, SA Dawwd, JM Abdul-Jabbar - Biomedical Signal Processing …, 2021 - Elsevier
Objectives The availability of large and varied Electroencephalogram (EEG) datasets,
rapidly advances and inventions in deep learning techniques, and highly powerful and …

Deep learning for electroencephalogram (EEG) classification tasks: a review

A Craik, Y He, JL Contreras-Vidal - Journal of neural engineering, 2019 - iopscience.iop.org
Objective. Electroencephalography (EEG) analysis has been an important tool in
neuroscience with applications in neuroscience, neural engineering (eg Brain–computer …

A deep learning approach for automatic seizure detection in children with epilepsy

A Abdelhameed, M Bayoumi - Frontiers in Computational …, 2021 - frontiersin.org
Over the last few decades, electroencephalogram (EEG) has become one of the most vital
tools used by physicians to diagnose several neurological disorders of the human brain and …

Deep representation-based domain adaptation for nonstationary EEG classification

H Zhao, Q Zheng, K Ma, H Li… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
In the context of motor imagery, electroencephalography (EEG) data vary from subject to
subject such that the performance of a classifier trained on data of multiple subjects from a …

Non-iterative and fast deep learning: Multilayer extreme learning machines

J Zhang, Y Li, W **ao, Z Zhang - Journal of the Franklin Institute, 2020 - Elsevier
In the past decade, deep learning techniques have powered many aspects of our daily life,
and drawn ever-increasing research interests. However, conventional deep learning …

Feature extraction method based on filter banks and Riemannian tangent space in motor-imagery BCI

H Fang, J **, I Daly, X Wang - IEEE journal of biomedical and …, 2022 - ieeexplore.ieee.org
Optimal feature extraction for multi-category motor imagery brain-computer interfaces (MI-
BCIs) is a research hotspot. The common spatial pattern (CSP) algorithm is one of the most …

Deep learning in EEG: Advance of the last ten-year critical period

S Gong, K **ng, A Cichocki, J Li - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Deep learning has achieved excellent performance in a wide range of domains, especially
in speech recognition and computer vision. Relatively less work has been done for …

A comprehensive review of extreme learning machine on medical imaging

Y Huérfano-Maldonado, M Mora, K Vilches… - Neurocomputing, 2023 - Elsevier
The feedforward neural network based on randomization has been of great interest in the
scientific community, particularly extreme learning machines, due to its simplicity, training …