Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Promising directions of machine learning for partial differential equations
Partial differential equations (PDEs) are among the most universal and parsimonious
descriptions of natural physical laws, capturing a rich variety of phenomenology and …
descriptions of natural physical laws, capturing a rich variety of phenomenology and …
Enhancing computational fluid dynamics with machine learning
Abstract Machine learning is rapidly becoming a core technology for scientific computing,
with numerous opportunities to advance the field of computational fluid dynamics. Here we …
with numerous opportunities to advance the field of computational fluid dynamics. Here we …
Modern Koopman theory for dynamical systems
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …
algorithms emerging from modern computing and data science. First-principles derivations …
Learning nonlinear reduced models from data with operator inference
This review discusses Operator Inference, a nonintrusive reduced modeling approach that
incorporates physical governing equations by defining a structured polynomial form for the …
incorporates physical governing equations by defining a structured polynomial form for the …
Model reduction and neural networks for parametric PDEs
We develop a general framework for data-driven approximation of input-output maps
between infinitedimensional spaces. The proposed approach is motivated by the recent …
between infinitedimensional spaces. The proposed approach is motivated by the recent …
Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability
J Wang, Y Li, RX Gao, F Zhang - Journal of Manufacturing Systems, 2022 - Elsevier
To overcome the limitations associated with purely physics-based and data-driven modeling
methods, hybrid, physics-based data-driven models have been developed, with improved …
methods, hybrid, physics-based data-driven models have been developed, with improved …
Learning physics-based models from data: perspectives from inverse problems and model reduction
This article addresses the inference of physics models from data, from the perspectives of
inverse problems and model reduction. These fields develop formulations that integrate data …
inverse problems and model reduction. These fields develop formulations that integrate data …
Data-enabled physics-informed machine learning for reduced-order modeling digital twin: application to nuclear reactor physics
This paper proposes an approach that combines reduced-order models with machine
learning in order to create physics-informed digital twins to predict high-dimensional output …
learning in order to create physics-informed digital twins to predict high-dimensional output …
Digital twins in wind energy: Emerging technologies and industry-informed future directions
This article presents a comprehensive overview of the digital twin technology and its
capability levels, with a specific focus on its applications in the wind energy industry. It …
capability levels, with a specific focus on its applications in the wind energy industry. It …
Operator inference for non-intrusive model reduction with quadratic manifolds
This paper proposes a novel approach for learning a data-driven quadratic manifold from
high-dimensional data, then employing this quadratic manifold to derive efficient physics …
high-dimensional data, then employing this quadratic manifold to derive efficient physics …