GAUCHE: a library for Gaussian processes in chemistry

RR Griffiths, L Klarner, H Moss… - Advances in …, 2023 - proceedings.neurips.cc
We introduce GAUCHE, an open-source library for GAUssian processes in CHEmistry.
Gaussian processes have long been a cornerstone of probabilistic machine learning …

Reliable graph neural networks for drug discovery under distributional shift

K Han, B Lakshminarayanan, J Liu - arxiv preprint arxiv:2111.12951, 2021 - arxiv.org
The concern of overconfident mis-predictions under distributional shift demands extensive
reliability research on Graph Neural Networks used in critical tasks in drug discovery. Here …

Gaussian process molecule property prediction with flowmo

HB Moss, RR Griffiths - arxiv preprint arxiv:2010.01118, 2020 - arxiv.org
We present FlowMO: an open-source Python library for molecular property prediction with
Gaussian Processes. Built upon GPflow and RDKit, FlowMO enables the user to make …

Ranking over regression for bayesian optimization and molecule selection

G Tom, S Lo, S Corapi, A Aspuru-Guzik… - arxiv preprint arxiv …, 2024 - arxiv.org
Bayesian optimization (BO) has become an indispensable tool for autonomous decision-
making across diverse applications from autonomous vehicle control to accelerated drug …

Muben: Benchmarking the uncertainty of molecular representation models

Y Li, L Kong, Y Du, Y Yu, Y Zhuang, W Mu… - arxiv preprint arxiv …, 2023 - arxiv.org
Large molecular representation models pre-trained on massive unlabeled data have shown
great success in predicting molecular properties. However, these models may tend to overfit …

Bayesian graph neural networks for molecular property prediction

G Lamb, B Paige - arxiv preprint arxiv:2012.02089, 2020 - arxiv.org
Graph neural networks for molecular property prediction are frequently underspecified by
data and fail to generalise to new scaffolds at test time. A potential solution is Bayesian …

[PDF][PDF] GAUCHE: a library for Gaussian processes and Bayesian optimisation in chemistry

RR Griffiths, L Klarner, A Ravuri… - … 2022 Workshop on …, 2022 - realworldml.github.io
We introduce GAUCHE, a library for GAUssian processes in CHEmistry. Gaussian
processes have long been a cornerstone of probabilistic machine learning, affording …

Reliable graph predictions: Conformal prediction for Graph Neural Networks

A Bååw - 2022 - diva-portal.org
We have seen a rapid increase in the development of deep learning algorithms in recent
decades. However, while these algorithms have unlocked new business areas and led to …

[KIRJA][B] 詳解 マテリアルズインフォマティクス: 有機・無機化学のための深層学習

船津公人, 井上貴央, 西川大貴 - 2021 - books.google.com
化学の研究開発ではマテリアルズインフォマティクス (機械学習・深層学習を用いた新素材探索や
新材料設計) の技術が導入され始めています. 一方で, 有機化学・無機化学のどの領域かによって …