Human action recognition from various data modalities: A review

Z Sun, Q Ke, H Rahmani, M Bennamoun… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Human Action Recognition (HAR) aims to understand human behavior and assign a label to
each action. It has a wide range of applications, and therefore has been attracting increasing …

Human activity recognition: Review, taxonomy and open challenges

MH Arshad, M Bilal, A Gani - Sensors, 2022 - mdpi.com
Nowadays, Human Activity Recognition (HAR) is being widely used in a variety of domains,
and vision and sensor-based data enable cutting-edge technologies to detect, recognize …

Less is more: Clipbert for video-and-language learning via sparse sampling

J Lei, L Li, L Zhou, Z Gan, TL Berg… - Proceedings of the …, 2021 - openaccess.thecvf.com
The canonical approach to video-and-language learning (eg, video question answering)
dictates a neural model to learn from offline-extracted dense video features from vision …

Dynamic neural networks: A survey

Y Han, G Huang, S Song, L Yang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Dynamic neural network is an emerging research topic in deep learning. Compared to static
models which have fixed computational graphs and parameters at the inference stage …

Revisiting the" video" in video-language understanding

S Buch, C Eyzaguirre, A Gaidon, J Wu… - Proceedings of the …, 2022 - openaccess.thecvf.com
What makes a video task uniquely suited for videos, beyond what can be understood from a
single image? Building on recent progress in self-supervised image-language models, we …

A dynamic multi-scale voxel flow network for video prediction

X Hu, Z Huang, A Huang, J Xu… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
The performance of video prediction has been greatly boosted by advanced deep neural
networks. However, most of the current methods suffer from large model sizes and require …

X3d: Expanding architectures for efficient video recognition

C Feichtenhofer - Proceedings of the IEEE/CVF conference …, 2020 - openaccess.thecvf.com
This paper presents X3D, a family of efficient video networks that progressively expand a
tiny 2D image classification architecture along multiple network axes, in space, time, width …

Rethinking video vits: Sparse video tubes for joint image and video learning

AJ Piergiovanni, W Kuo… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
We present a simple approach which can turn a ViT encoder into an efficient video model,
which can seamlessly work with both image and video inputs. By sparsely sampling the …

A comprehensive study of deep video action recognition

Y Zhu, X Li, C Liu, M Zolfaghari, Y **ong, C Wu… - arxiv preprint arxiv …, 2020 - arxiv.org
Video action recognition is one of the representative tasks for video understanding. Over the
last decade, we have witnessed great advancements in video action recognition thanks to …

Listen to look: Action recognition by previewing audio

R Gao, TH Oh, K Grauman… - Proceedings of the …, 2020 - openaccess.thecvf.com
In the face of the video data deluge, today's expensive clip-level classifiers are increasingly
impractical. We propose a framework for efficient action recognition in untrimmed video that …