An adaptive pyramid graph and variation residual-based anomaly detection network for rail surface defects

M Niu, Y Wang, K Song, Q Wang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Anomaly detection is a crucial means to detect unbalanced and multiclass abnormal data in
industrial products. The existing anomaly detection model is usually suitable for products …

[HTML][HTML] Two-step residual-error based approach for anomaly detection in engineering systems using variational autoencoders

A González-Muñiz, I Díaz, AA Cuadrado… - Computers and …, 2022 - Elsevier
Anomaly detection is a crucial task in the engineering systems field. However, there is
usually little or no information about all possible abnormal modes in systems. Hence, a …

[HTML][HTML] Additive autoencoder for dimension estimation

T Kärkkäinen, J Hänninen - Neurocomputing, 2023 - Elsevier
Dimension reduction is one of the key data transformation techniques in machine learning
and knowledge discovery. It can be realized by using linear and nonlinear transformation …

Quantifying uncertainty in physics-informed variational autoencoders for anomaly detection

MJ Neuer - Impact and Opportunities of Artificial Intelligence …, 2021 - Springer
An example of anomaly detection for industrial production processes is shown, based on a
variational autoencoder. Starting with a simple probability corridor, the concept of …

Defending adversarial attacks via semantic feature manipulation

S Wang, S Nepal, C Rudolph, M Grobler… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
Machine learning models have demonstrated vulnerability to adversarial attacks, more
specifically misclassification of adversarial examples. In this article, we propose a one-off …

[PDF][PDF] Aplicación de técnicas de aprendizaje profundo (Deep Learning) al análisis y mejora de la eficiencia en sistemas de ingeniería

AG Muñiz, ID Blanco - 2023 - researchgate.net
A lo largo de la última década, los algoritmos de aprendizaje profundo o deep learning se
han convertido en un motor de innovación y transformación, con impacto en una amplia …

Model-agnostic causal principle for unbiased kpi anomaly detection

J Ji, D Guan, Y Deng, W Yuan - 2022 International Joint …, 2022 - ieeexplore.ieee.org
KPI anomaly detection plays an important role in operation and maintenance. Due to
incomplete or missing labels are common, methods based on VAE (ie, Variational Auto …

Challenges and frontiers in implementing artificial intelligence in process industry

MJ Neuer, A Wolff, N Holzknecht - Cybersecurity workshop by European …, 2020 - Springer
The implementation of artificial intelligence faces different challenges of infrastructural, data
related, security related and social scope. These aspects are discussed, reflecting on the …

A Review of Adversarial Machine Learning for Cyber security in Intelligent Systems using Image Classification & Signal Classification Analysis

T Jahan - 2023 IEEE International Conference on ICT in …, 2023 - ieeexplore.ieee.org
Machine learning models with adversarial examples must be trained to differentiate between
genuine and invading data. Cyber computing technology and tools face huge intrusion …

End-to-End Anomaly Score Estimation for Contaminated Data via Adversarial Representation Learning

D Li, J Liu, H Wang - CAAI International Conference on Artificial …, 2021 - Springer
In recent years, deep learning has been widely used in the field of anomaly detection.
Existing deep anomaly detection methods mostly focus on extracting feature representations …