Parameter-efficient fine-tuning for large models: A comprehensive survey

Z Han, C Gao, J Liu, J Zhang, SQ Zhang - arxiv preprint arxiv:2403.14608, 2024 - arxiv.org
Large models represent a groundbreaking advancement in multiple application fields,
enabling remarkable achievements across various tasks. However, their unprecedented …

FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery

X Sun, P Wang, Z Yan, F Xu, R Wang, W Diao… - ISPRS Journal of …, 2022 - Elsevier
With the rapid development of deep learning, many deep learning-based approaches have
made great achievements in object detection tasks. It is generally known that deep learning …

Vmamba: Visual state space model

Y Liu, Y Tian, Y Zhao, H Yu, L **e… - Advances in neural …, 2025 - proceedings.neurips.cc
Designing computationally efficient network architectures remains an ongoing necessity in
computer vision. In this paper, we adapt Mamba, a state-space language model, into …

Biformer: Vision transformer with bi-level routing attention

L Zhu, X Wang, Z Ke, W Zhang… - Proceedings of the …, 2023 - openaccess.thecvf.com
As the core building block of vision transformers, attention is a powerful tool to capture long-
range dependency. However, such power comes at a cost: it incurs a huge computation …

Efficientvit: Memory efficient vision transformer with cascaded group attention

X Liu, H Peng, N Zheng, Y Yang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Vision transformers have shown great success due to their high model capabilities.
However, their remarkable performance is accompanied by heavy computation costs, which …

Yolo-world: Real-time open-vocabulary object detection

T Cheng, L Song, Y Ge, W Liu… - Proceedings of the …, 2024 - openaccess.thecvf.com
Abstract The You Only Look Once (YOLO) series of detectors have established themselves
as efficient and practical tools. However their reliance on predefined and trained object …

Convnext v2: Co-designing and scaling convnets with masked autoencoders

S Woo, S Debnath, R Hu, X Chen… - Proceedings of the …, 2023 - openaccess.thecvf.com
Driven by improved architectures and better representation learning frameworks, the field of
visual recognition has enjoyed rapid modernization and performance boost in the early …

Sequential modeling enables scalable learning for large vision models

Y Bai, X Geng, K Mangalam, A Bar… - Proceedings of the …, 2024 - openaccess.thecvf.com
We introduce a novel sequential modeling approach which enables learning a Large Vision
Model (LVM) without making use of any linguistic data. To do this we define a common …

Rtmdet: An empirical study of designing real-time object detectors

C Lyu, W Zhang, H Huang, Y Zhou, Y Wang… - arxiv preprint arxiv …, 2022 - arxiv.org
In this paper, we aim to design an efficient real-time object detector that exceeds the YOLO
series and is easily extensible for many object recognition tasks such as instance …

Unireplknet: A universal perception large-kernel convnet for audio video point cloud time-series and image recognition

X Ding, Y Zhang, Y Ge, S Zhao… - Proceedings of the …, 2024 - openaccess.thecvf.com
Large-kernel convolutional neural networks (ConvNets) have recently received extensive
research attention but two unresolved and critical issues demand further investigation. 1) …