Comprehensive review on twin support vector machines

M Tanveer, T Rajani, R Rastogi, YH Shao… - Annals of Operations …, 2022 - Springer
Twin support vector machine (TWSVM) and twin support vector regression (TSVR) are newly
emerging efficient machine learning techniques which offer promising solutions for …

Machine learning techniques for the diagnosis of Alzheimer's disease: A review

M Tanveer, B Richhariya, RU Khan… - ACM Transactions on …, 2020 - dl.acm.org
Alzheimer's disease is an incurable neurodegenerative disease primarily affecting the
elderly population. Efficient automated techniques are needed for early diagnosis of …

A systematic survey of computer-aided diagnosis in medicine: Past and present developments

J Yanase, E Triantaphyllou - Expert Systems with Applications, 2019 - Elsevier
Computer-aided diagnosis (CAD) in medicine is the result of a large amount of effort
expended in the interface of medicine and computer science. As some CAD systems in …

A comparative analysis of signal processing and classification methods for different applications based on EEG signals

A Khosla, P Khandnor, T Chand - Biocybernetics and Biomedical …, 2020 - Elsevier
Electroencephalogram (EEG) measures the neuronal activities in the form of electric
currents that are generated due to the synchronized activity by a group of specialized …

Non-parallel bounded support matrix machine and its application in roller bearing fault diagnosis

H Pan, H Xu, J Zheng, J Tong - Information Sciences, 2023 - Elsevier
At present, the excellent performance of support vector machine (SVM) has made it
successfully applied in many fields. However, when SVM is used for two-dimensional matrix …

A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG) Signal

M Savadkoohi, T Oladunni, L Thompson - Biocybernetics and Biomedical …, 2020 - Elsevier
This study investigates the properties of the brain electrical activity from different recording
regions and physiological states for seizure detection. Neurophysiologists will find the work …

Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM-RFE)

B Richhariya, M Tanveer, AH Rashid… - … Signal Processing and …, 2020 - Elsevier
Alzheimer's disease is one of the most common causes of death in today's world. Magnetic
resonance imaging (MRI) provides an efficient and non-invasive approach for diagnosis of …

Asian stock markets closing index forecast based on secondary decomposition, multi-factor analysis and attention-based LSTM model

J Wang, Q Cui, X Sun, M He - Engineering Applications of Artificial …, 2022 - Elsevier
The analysis and prediction of stock markets in Asian is an important issue which can help to
promote the integration and globalization of financial cooperation. However, owning to the …

A reduced universum twin support vector machine for class imbalance learning

B Richhariya, M Tanveer - Pattern Recognition, 2020 - Elsevier
In most of the real world datasets, there is an imbalance in the number of samples belonging
to different classes. Various pattern classification problems such as fault or disease …

FDN-ADNet: Fuzzy LS-TWSVM based deep learning network for prognosis of the Alzheimer's disease using the sagittal plane of MRI scans

R Sharma, T Goel, M Tanveer, R Murugan - Applied Soft Computing, 2022 - Elsevier
Alzheimer's disease (AD) is the most pervasive form of dementia, resulting in severe
psychosocial effects such as affecting personality, reasoning, emotions, and memory …