Flood prediction using machine learning models: Literature review

A Mosavi, P Ozturk, K Chau - Water, 2018 - mdpi.com
Floods are among the most destructive natural disasters, which are highly complex to model.
The research on the advancement of flood prediction models contributed to risk reduction …

eXtreme gradient boosting algorithm with machine learning: A review

ZA Ali, ZH Abduljabbar, HA Tahir, AB Sallow… - Academic Journal of …, 2023 - cir.nii.ac.jp
< jats: p> The primary task of machine learning is to extract valuable information from the
data that is generated every day, process it to learn from it, and take useful actions. Original …

[HTML][HTML] Flood susceptibility modelling using advanced ensemble machine learning models

ARMT Islam, S Talukdar, S Mahato, S Kundu… - Geoscience …, 2021 - Elsevier
Floods are one of nature's most destructive disasters because of the immense damage to
land, buildings, and human fatalities. It is difficult to forecast the areas that are vulnerable to …

Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous …

J Dou, AP Yunus, DT Bui, A Merghadi, M Sahana… - Landslides, 2020 - Springer
Heavy rainfall in mountainous terrain can trigger numerous landslides in hill slopes. These
landslides can be deadly to the community living downslope with their fast pace, turning …

COVID-19 pandemic prediction for Hungary; a hybrid machine learning approach

G Pinter, I Felde, A Mosavi, P Ghamisi, R Gloaguen - Mathematics, 2020 - mdpi.com
Several epidemiological models are being used around the world to project the number of
infected individuals and the mortality rates of the COVID-19 outbreak. Advancing accurate …

[HTML][HTML] Application of remote sensing and machine learning algorithms for forest fire map** in a Mediterranean area

M Mohajane, R Costache, F Karimi, QB Pham… - Ecological …, 2021 - Elsevier
Forest fire disaster is currently the subject of intense research worldwide. The development
of accurate strategies to prevent potential impacts and minimize the occurrence of disastrous …

Sorting, regrou**, and echelon utilization of the large-scale retired lithium batteries: A critical review

X Lai, Y Huang, C Deng, H Gu, X Han, Y Zheng… - … and Sustainable Energy …, 2021 - Elsevier
With the rapid development of electric vehicles, the safe and environmentally friendly
disposal of retired lithium batteries (LIBs) is becoming a serious issue. Echelon utilization of …

Flash-flood susceptibility map** based on XGBoost, random forest and boosted regression trees

R Abedi, R Costache… - Geocarto …, 2022 - Taylor & Francis
Historical exploration of flash flood events and producing flash-flood susceptibility maps are
crucial steps for decision makers in disaster management. In this article, classification and …

[HTML][HTML] A hybrid ensemble-based deep-learning framework for landslide susceptibility map**

L Lv, T Chen, J Dou, A Plaza - … Journal of Applied Earth Observation and …, 2022 - Elsevier
Landslides are highly hazardous geological disasters that can potentially threaten the safety
of human life and property. As a result, landslide susceptibility map** (LSM) plays an …

[HTML][HTML] Predicting flood susceptibility using LSTM neural networks

Z Fang, Y Wang, L Peng, H Hong - Journal of Hydrology, 2021 - Elsevier
Identifying floods and producing flood susceptibility maps are crucial steps for decision-
makers to prevent and manage disasters. Plenty of studies have used machine learning …