Machine learning for alloys
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …
data-science-inspired work. The dawn of computational databases has made the integration …
[HTML][HTML] Scope of machine learning in materials research—A review
This comprehensive review investigates the multifaceted applications of machine learning in
materials research across six key dimensions, redefining the field's boundaries. It explains …
materials research across six key dimensions, redefining the field's boundaries. It explains …
Hybrid double atom catalysts for hydrogen evolution reaction: a sweet marriage of metal and nonmetal
Searching for active and low‐cost electrocatalysts for the hydrogen evolution reaction (HER)
is crucial to develop sustainable energy, yet it remains a significant challenge. Based on the …
is crucial to develop sustainable energy, yet it remains a significant challenge. Based on the …
Recent advances and applications of machine learning in solid-state materials science
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …
is machine learning. This collection of statistical methods has already proved to be capable …
Machine learning in materials science
Traditional methods of discovering new materials, such as the empirical trial and error
method and the density functional theory (DFT)‐based method, are unable to keep pace …
method and the density functional theory (DFT)‐based method, are unable to keep pace …
Opportunities and challenges for machine learning in materials science
Advances in machine learning have impacted myriad areas of materials science, such as
the discovery of novel materials and the improvement of molecular simulations, with likely …
the discovery of novel materials and the improvement of molecular simulations, with likely …
Machine learning for catalysis informatics: recent applications and prospects
The discovery and development of catalysts and catalytic processes are essential
components to maintaining an ecological balance in the future. Recent revolutions made in …
components to maintaining an ecological balance in the future. Recent revolutions made in …
Bayesian optimization for adaptive experimental design: A review
Bayesian optimisation is a statistical method that efficiently models and optimises expensive
“black-box” functions. This review considers the application of Bayesian optimisation to …
“black-box” functions. This review considers the application of Bayesian optimisation to …
Machine learning in materials science: From explainable predictions to autonomous design
G Pilania - Computational Materials Science, 2021 - Elsevier
The advent of big data and algorithmic developments in the field of machine learning (and
artificial intelligence, in general) have greatly impacted the entire spectrum of physical …
artificial intelligence, in general) have greatly impacted the entire spectrum of physical …
Machine learning in materials informatics: recent applications and prospects
Propelled partly by the Materials Genome Initiative, and partly by the algorithmic
developments and the resounding successes of data-driven efforts in other domains …
developments and the resounding successes of data-driven efforts in other domains …