A state-of-the-art survey on solving non-iid data in federated learning
Federated Learning (FL) proposed in recent years has received significant attention from
researchers in that it can enable multiple clients to cooperatively train global models without …
researchers in that it can enable multiple clients to cooperatively train global models without …
A survey on federated learning systems: Vision, hype and reality for data privacy and protection
As data privacy increasingly becomes a critical societal concern, federated learning has
been a hot research topic in enabling the collaborative training of machine learning models …
been a hot research topic in enabling the collaborative training of machine learning models …
Feddc: Federated learning with non-iid data via local drift decoupling and correction
Federated learning (FL) allows multiple clients to collectively train a high-performance
global model without sharing their private data. However, the key challenge in federated …
global model without sharing their private data. However, the key challenge in federated …
Towards understanding biased client selection in federated learning
Federated learning is a distributed optimization paradigm that enables a large number of
resource-limited client nodes to cooperatively train a model without data sharing. Previous …
resource-limited client nodes to cooperatively train a model without data sharing. Previous …
Federated learning on non-iid data silos: An experimental study
Due to the increasing privacy concerns and data regulations, training data have been
increasingly fragmented, forming distributed databases of multiple “data silos”(eg, within …
increasingly fragmented, forming distributed databases of multiple “data silos”(eg, within …
Exploiting shared representations for personalized federated learning
Deep neural networks have shown the ability to extract universal feature representations
from data such as images and text that have been useful for a variety of learning tasks …
from data such as images and text that have been useful for a variety of learning tasks …
Federated learning for generalization, robustness, fairness: A survey and benchmark
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …
collaboration among different parties. Recently, with the popularity of federated learning, an …
Ditto: Fair and robust federated learning through personalization
Fairness and robustness are two important concerns for federated learning systems. In this
work, we identify that robustness to data and model poisoning attacks and fairness …
work, we identify that robustness to data and model poisoning attacks and fairness …
Fedbn: Federated learning on non-iid features via local batch normalization
The emerging paradigm of federated learning (FL) strives to enable collaborative training of
deep models on the network edge without centrally aggregating raw data and hence …
deep models on the network edge without centrally aggregating raw data and hence …