Random quantum circuits
Quantum circuits—built from local unitary gates and local measurements—are a new
playground for quantum many-body physics and a tractable setting to explore universal …
playground for quantum many-body physics and a tractable setting to explore universal …
Quantum many-body scars: A quasiparticle perspective
Weakly interacting quasiparticles play a central role in the low-energy description of many
phases of quantum matter. At higher energies, however, quasiparticles cease to be well …
phases of quantum matter. At higher energies, however, quasiparticles cease to be well …
Dipolar physics: a review of experiments with magnetic quantum gases
Since the achievement of quantum degeneracy in gases of chromium atoms in 2004, the
experimental investigation of ultracold gases made of highly magnetic atoms has …
experimental investigation of ultracold gases made of highly magnetic atoms has …
Quantum many-body scars and Hilbert space fragmentation: a review of exact results
The discovery of quantum many-body scars (QMBS) both in Rydberg atom simulators and in
the Affleck–Kennedy–Lieb–Tasaki spin-1 chain model, have shown that a weak violation of …
the Affleck–Kennedy–Lieb–Tasaki spin-1 chain model, have shown that a weak violation of …
Entanglement phase transition induced by the non-Hermitian skin effect
Recent years have seen remarkable development in open quantum systems effectively
described by non-Hermitian Hamiltonians. A unique feature of non-Hermitian topological …
described by non-Hermitian Hamiltonians. A unique feature of non-Hermitian topological …
Non-hermitian physics
A review is given on the foundations and applications of non-Hermitian classical and
quantum physics. First, key theorems and central concepts in non-Hermitian linear algebra …
quantum physics. First, key theorems and central concepts in non-Hermitian linear algebra …
Many-body localization in the age of classical computing
Statistical mechanics provides a framework for describing the physics of large, complex
many-body systems using only a few macroscopic parameters to determine the state of the …
many-body systems using only a few macroscopic parameters to determine the state of the …
Quantum algorithms for quantum chemistry and quantum materials science
As we begin to reach the limits of classical computing, quantum computing has emerged as
a technology that has captured the imagination of the scientific world. While for many years …
a technology that has captured the imagination of the scientific world. While for many years …
Symmetry restoration and quantum Mpemba effect in symmetric random circuits
Entanglement asymmetry, which serves as a diagnostic tool for symmetry breaking and a
proxy for thermalization, has recently been proposed and studied in the context of symmetry …
proxy for thermalization, has recently been proposed and studied in the context of symmetry …
Engineered dissipation for quantum information science
Quantum information processing relies on the precise control of non-classical states in the
presence of many uncontrolled environmental degrees of freedom. The interactions …
presence of many uncontrolled environmental degrees of freedom. The interactions …