Foundation Models Defining a New Era in Vision: a Survey and Outlook
Vision systems that see and reason about the compositional nature of visual scenes are
fundamental to understanding our world. The complex relations between objects and their …
fundamental to understanding our world. The complex relations between objects and their …
Vision-language pre-training: Basics, recent advances, and future trends
This monograph surveys vision-language pre-training (VLP) methods for multimodal
intelligence that have been developed in the last few years. We group these approaches …
intelligence that have been developed in the last few years. We group these approaches …
Sharegpt4v: Improving large multi-modal models with better captions
Modality alignment serves as the cornerstone for large multi-modal models (LMMs).
However, the impact of different attributes (eg, data type, quality, and scale) of training data …
However, the impact of different attributes (eg, data type, quality, and scale) of training data …
Image as a foreign language: Beit pretraining for vision and vision-language tasks
A big convergence of language, vision, and multimodal pretraining is emerging. In this work,
we introduce a general-purpose multimodal foundation model BEiT-3, which achieves …
we introduce a general-purpose multimodal foundation model BEiT-3, which achieves …
Eva: Exploring the limits of masked visual representation learning at scale
We launch EVA, a vision-centric foundation model to explore the limits of visual
representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained …
representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained …
Internimage: Exploring large-scale vision foundation models with deformable convolutions
Compared to the great progress of large-scale vision transformers (ViTs) in recent years,
large-scale models based on convolutional neural networks (CNNs) are still in an early …
large-scale models based on convolutional neural networks (CNNs) are still in an early …
Vid2seq: Large-scale pretraining of a visual language model for dense video captioning
In this work, we introduce Vid2Seq, a multi-modal single-stage dense event captioning
model pretrained on narrated videos which are readily-available at scale. The Vid2Seq …
model pretrained on narrated videos which are readily-available at scale. The Vid2Seq …
Cogvlm: Visual expert for pretrained language models
We introduce CogVLM, a powerful open-source visual language foundation model. Different
from the popular shallow alignment method which maps image features into the input space …
from the popular shallow alignment method which maps image features into the input space …
Generalized decoding for pixel, image, and language
We present X-Decoder, a generalized decoding model that can predict pixel-level
segmentation and language tokens seamlessly. X-Decoder takes as input two types of …
segmentation and language tokens seamlessly. X-Decoder takes as input two types of …
A simple framework for open-vocabulary segmentation and detection
In this work, we present OpenSeeD, a simple Open-vocabulary Segmentation and Detection
framework that learns from different segmentation and detection datasets. To bridge the gap …
framework that learns from different segmentation and detection datasets. To bridge the gap …