Machine learning methods for small data challenges in molecular science
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
Rechargeable batteries of the future—the state of the art from a BATTERY 2030+ perspective
The development of new batteries has historically been achieved through discovery and
development cycles based on the intuition of the researcher, followed by experimental trial …
development cycles based on the intuition of the researcher, followed by experimental trial …
Stablerep: Synthetic images from text-to-image models make strong visual representation learners
We investigate the potential of learning visual representations using synthetic images
generated by text-to-image models. This is a natural question in the light of the excellent …
generated by text-to-image models. This is a natural question in the light of the excellent …
Scaling laws of synthetic images for model training... for now
Recent significant advances in text-to-image models unlock the possibility of training vision
systems using synthetic images potentially overcoming the difficulty of collecting curated …
systems using synthetic images potentially overcoming the difficulty of collecting curated …
Artificial intelligence applied to battery research: hype or reality?
This is a critical review of artificial intelligence/machine learning (AI/ML) methods applied to
battery research. It aims at providing a comprehensive, authoritative, and critical, yet easily …
battery research. It aims at providing a comprehensive, authoritative, and critical, yet easily …
Computational discovery of transition-metal complexes: from high-throughput screening to machine learning
Transition-metal complexes are attractive targets for the design of catalysts and functional
materials. The behavior of the metal–organic bond, while very tunable for achieving target …
materials. The behavior of the metal–organic bond, while very tunable for achieving target …
Machine intelligence for chemical reaction space
Discovering new reactions, optimizing their performance, and extending the synthetically
accessible chemical space are critical drivers for major technological advances and more …
accessible chemical space are critical drivers for major technological advances and more …
Accelerating antibiotic discovery through artificial intelligence
By targeting invasive organisms, antibiotics insert themselves into the ancient struggle of the
host-pathogen evolutionary arms race. As pathogens evolve tactics for evading antibiotics …
host-pathogen evolutionary arms race. As pathogens evolve tactics for evading antibiotics …
Data quantity governance for machine learning in materials science
Y Liu, Z Yang, X Zou, S Ma, D Liu… - National Science …, 2023 - academic.oup.com
Data-driven machine learning (ML) is widely employed in the analysis of materials structure–
activity relationships, performance optimization and materials design due to its superior …
activity relationships, performance optimization and materials design due to its superior …
Data‐Driven Materials Innovation and Applications
Owing to the rapid developments to improve the accuracy and efficiency of both
experimental and computational investigative methodologies, the massive amounts of data …
experimental and computational investigative methodologies, the massive amounts of data …