Quo vadis artificial intelligence?

Y Jiang, X Li, H Luo, S Yin, O Kaynak - Discover Artificial Intelligence, 2022 - Springer
The study of artificial intelligence (AI) has been a continuous endeavor of scientists and
engineers for over 65 years. The simple contention is that human-created machines can do …

A review of earth artificial intelligence

Z Sun, L Sandoval, R Crystal-Ornelas… - Computers & …, 2022 - Elsevier
In recent years, Earth system sciences are urgently calling for innovation on improving
accuracy, enhancing model intelligence level, scaling up operation, and reducing costs in …

Advanced machine learning techniques to improve hydrological prediction: A comparative analysis of streamflow prediction models

V Kumar, N Kedam, KV Sharma, DJ Mehta, T Caloiero - Water, 2023 - mdpi.com
The management of water resources depends heavily on hydrological prediction, and
advances in machine learning (ML) present prospects for improving predictive modelling …

Application of long short-term memory (LSTM) neural network for flood forecasting

XH Le, HV Ho, G Lee, S Jung - Water, 2019 - mdpi.com
Flood forecasting is an essential requirement in integrated water resource management.
This paper suggests a Long Short-Term Memory (LSTM) neural network model for flood …

Applications of artificial intelligence for disaster management

W Sun, P Bocchini, BD Davison - Natural Hazards, 2020 - Springer
Natural hazards have the potential to cause catastrophic damage and significant
socioeconomic loss. The actual damage and loss observed in the recent decades has …

An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research …

ZM Yaseen, SO Sulaiman, RC Deo, KW Chau - Journal of Hydrology, 2019 - Elsevier
Despite the massive diversity in the modeling requirements for practical hydrological
applications, there remains a need to develop more reliable and intelligent expert systems …

A brief review of random forests for water scientists and practitioners and their recent history in water resources

H Tyralis, G Papacharalampous, A Langousis - Water, 2019 - mdpi.com
Random forests (RF) is a supervised machine learning algorithm, which has recently started
to gain prominence in water resources applications. However, existing applications are …

A novel intelligent deep learning predictive model for meteorological drought forecasting

A Danandeh Mehr, A Rikhtehgar Ghiasi… - Journal of Ambient …, 2023 - Springer
The advancements of artificial intelligence models have demonstrated notable progress in
the field of hydrological forecasting. However, predictions of extreme climate events are still …

Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead streamflow forecasting: A comparative study

F Granata, F Di Nunno, G de Marinis - Journal of Hydrology, 2022 - Elsevier
Prediction of river flow rates is an essential task for both flood protection and optimal water
resource management. The high uncertainty associated with basin characteristics …

A transdisciplinary review of deep learning research and its relevance for water resources scientists

C Shen - Water Resources Research, 2018 - Wiley Online Library
Deep learning (DL), a new generation of artificial neural network research, has transformed
industries, daily lives, and various scientific disciplines in recent years. DL represents …