[HTML][HTML] Towards resource-frugal deep convolutional neural networks for hyperspectral image segmentation

J Nalepa, M Antoniak, M Myller, PR Lorenzo… - Microprocessors and …, 2020 - Elsevier
Hyperspectral image analysis has been gaining research attention thanks to the current
advances in sensor design which have made acquiring such imagery much more affordable …

Evaluating convolutional neural networks reliability depending on their data representation

A Ruospo, A Bosio, A Ianne… - 2020 23rd Euromicro …, 2020 - ieeexplore.ieee.org
Safety-critical applications are frequently based on deep learning algorithms. In particular,
Convolutional Neural Networks (CNNs) are commonly deployed in autonomous driving …

Federated learning via lattice joint source-channel coding

SM Azimi-Abarghouyi… - 2024 IEEE International …, 2024 - ieeexplore.ieee.org
This paper introduces a universal federated learning framework that enables over-the-air
computation via digital communications, using a new joint source-channel coding scheme …

Compute-update federated learning: A lattice coding approach

SM Azimi-Abarghouyi… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
This paper introduces a federated learning framework that enables over-the-air computation
via digital communications, using a new joint source-channel coding scheme. Without …

Resource-frugal classification and analysis of pathology slides using image entropy

SJ Frank - Biomedical Signal Processing and Control, 2021 - Elsevier
Pathology slides of lung malignancies are classified using resource-frugal convolution
neural networks (CNNs) that may be deployed on mobile devices. In particular, the …

Compute-Update Federated Learning: A Lattice Coding Approach Over-the-Air

SM Azimi-Abarghouyi, LR Varshney - arxiv preprint arxiv:2409.06343, 2024 - arxiv.org
This paper introduces a federated learning framework that enables over-the-air computation
via digital communications, using a new joint source-channel coding scheme. Without …

Universal and Succinct Source Coding of Deep Neural Networks

S Basu, LR Varshney - IEEE Journal on Selected Areas in …, 2022 - ieeexplore.ieee.org
Deep neural networks have shown incredible performance for inference tasks in a variety of
domains, but require significant storage space, which limits scaling and use for on-device …

Signal Source Distribution Approximation to Speedup Scalar Quantizer Design

V Anavangot, A Kumar - IEEE Transactions on Signal …, 2021 - ieeexplore.ieee.org
Classical quantizer design approaches using the Lloyd-Max algorithm (or-means) have
served signal processing applications for more than three decades. With the advent of …

Segmentation of hyperspectral images using quantized convolutional neural networks

PR Lorenzo, M Marcinkiewicz… - 2018 21st Euromicro …, 2018 - ieeexplore.ieee.org
Image segmentation is a pivotal task in hyperspectral image processing. Usually, it is
performed in a setting where neither the environment nor the hardware pose an obstacle. If …

Co-optimization of neural networks and hardware architectures for their efficient execution

CID Latotzke, D Stroobandt, T Gemmeke - 2024 - publications.rwth-aachen.de
Kurzfassung Im Folgenden werden die Motivation, das Ziel und die Aufgabe der Dissertation
beschrieben. Der herausragende Sieg von AlexNet bei der ImageNet Large Scale …