A survey on heterogeneous graph embedding: methods, techniques, applications and sources
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …
Graph representation learning and its applications: a survey
Graphs are data structures that effectively represent relational data in the real world. Graph
representation learning is a significant task since it could facilitate various downstream …
representation learning is a significant task since it could facilitate various downstream …
Multi-view contrastive graph clustering
With the explosive growth of information technology, multi-view graph data have become
increasingly prevalent and valuable. Most existing multi-view clustering techniques either …
increasingly prevalent and valuable. Most existing multi-view clustering techniques either …
Representation learning for attributed multiplex heterogeneous network
Network embedding (or graph embedding) has been widely used in many real-world
applications. However, existing methods mainly focus on networks with single-typed …
applications. However, existing methods mainly focus on networks with single-typed …
Multi-view attributed graph clustering
Multi-view graph clustering has been intensively investigated during the past years.
However, existing methods are still limited in two main aspects. On the one hand, most of …
However, existing methods are still limited in two main aspects. On the one hand, most of …
Hdmi: High-order deep multiplex infomax
Networks have been widely used to represent the relations between objects such as
academic networks and social networks, and learning embedding for networks has thus …
academic networks and social networks, and learning embedding for networks has thus …
Heterogeneous network representation learning: A unified framework with survey and benchmark
Since real-world objects and their interactions are often multi-modal and multi-typed,
heterogeneous networks have been widely used as a more powerful, realistic, and generic …
heterogeneous networks have been widely used as a more powerful, realistic, and generic …
Unsupervised attributed multiplex network embedding
Nodes in a multiplex network are connected by multiple types of relations. However, most
existing network embedding methods assume that only a single type of relation exists …
existing network embedding methods assume that only a single type of relation exists …
Aligraph: A comprehensive graph neural network platform
An increasing number of machine learning tasks require dealing with large graph datasets,
which capture rich and complex relationship among potentially billions of elements. Graph …
which capture rich and complex relationship among potentially billions of elements. Graph …
One2multi graph autoencoder for multi-view graph clustering
Multi-view graph clustering, which seeks a partition of the graph with multiple views that
often provide more comprehensive yet complex information, has received considerable …
often provide more comprehensive yet complex information, has received considerable …