A comprehensive survey on poisoning attacks and countermeasures in machine learning

Z Tian, L Cui, J Liang, S Yu - ACM Computing Surveys, 2022 - dl.acm.org
The prosperity of machine learning has been accompanied by increasing attacks on the
training process. Among them, poisoning attacks have become an emerging threat during …

Wild patterns reloaded: A survey of machine learning security against training data poisoning

AE Cinà, K Grosse, A Demontis, S Vascon… - ACM Computing …, 2023 - dl.acm.org
The success of machine learning is fueled by the increasing availability of computing power
and large training datasets. The training data is used to learn new models or update existing …

Back to the drawing board: A critical evaluation of poisoning attacks on production federated learning

V Shejwalkar, A Houmansadr… - … IEEE Symposium on …, 2022 - ieeexplore.ieee.org
While recent works have indicated that federated learning (FL) may be vulnerable to
poisoning attacks by compromised clients, their real impact on production FL systems is not …

RETRACTED: SVM‐based generative adverserial networks for federated learning and edge computing attack model and outpoising

P Manoharan, R Walia, C Iwendi, TA Ahanger… - Expert …, 2023 - Wiley Online Library
Abstract Machine learning are vulnerable to the threats. The Intruders can utilize the
malicious nature of the nodes to attack the training dataset to worsen the process and …

Data poisoning attacks against federated learning systems

V Tolpegin, S Truex, ME Gursoy, L Liu - … 14–18, 2020, proceedings, part i …, 2020 - Springer
Federated learning (FL) is an emerging paradigm for distributed training of large-scale deep
neural networks in which participants' data remains on their own devices with only model …

Reflection backdoor: A natural backdoor attack on deep neural networks

Y Liu, X Ma, J Bailey, F Lu - Computer vision–ECCV 2020: 16th European …, 2020 - Springer
Recent studies have shown that DNNs can be compromised by backdoor attacks crafted at
training time. A backdoor attack installs a backdoor into the victim model by injecting a …

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

AB Arrieta, N Díaz-Rodríguez, J Del Ser, A Bennetot… - Information fusion, 2020 - Elsevier
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if
harnessed appropriately, may deliver the best of expectations over many application sectors …

Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities

A Bécue, I Praça, J Gama - Artificial Intelligence Review, 2021 - Springer
This survey paper discusses opportunities and threats of using artificial intelligence (AI)
technology in the manufacturing sector with consideration for offensive and defensive uses …

Can you really backdoor federated learning?

Z Sun, P Kairouz, AT Suresh, HB McMahan - arxiv preprint arxiv …, 2019 - arxiv.org
The decentralized nature of federated learning makes detecting and defending against
adversarial attacks a challenging task. This paper focuses on backdoor attacks in the …

Hidden trigger backdoor attacks

A Saha, A Subramanya, H Pirsiavash - Proceedings of the AAAI …, 2020 - ojs.aaai.org
With the success of deep learning algorithms in various domains, studying adversarial
attacks to secure deep models in real world applications has become an important research …