Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive survey on poisoning attacks and countermeasures in machine learning
The prosperity of machine learning has been accompanied by increasing attacks on the
training process. Among them, poisoning attacks have become an emerging threat during …
training process. Among them, poisoning attacks have become an emerging threat during …
Wild patterns reloaded: A survey of machine learning security against training data poisoning
The success of machine learning is fueled by the increasing availability of computing power
and large training datasets. The training data is used to learn new models or update existing …
and large training datasets. The training data is used to learn new models or update existing …
Back to the drawing board: A critical evaluation of poisoning attacks on production federated learning
While recent works have indicated that federated learning (FL) may be vulnerable to
poisoning attacks by compromised clients, their real impact on production FL systems is not …
poisoning attacks by compromised clients, their real impact on production FL systems is not …
RETRACTED: SVM‐based generative adverserial networks for federated learning and edge computing attack model and outpoising
P Manoharan, R Walia, C Iwendi, TA Ahanger… - Expert …, 2023 - Wiley Online Library
Abstract Machine learning are vulnerable to the threats. The Intruders can utilize the
malicious nature of the nodes to attack the training dataset to worsen the process and …
malicious nature of the nodes to attack the training dataset to worsen the process and …
Data poisoning attacks against federated learning systems
Federated learning (FL) is an emerging paradigm for distributed training of large-scale deep
neural networks in which participants' data remains on their own devices with only model …
neural networks in which participants' data remains on their own devices with only model …
Reflection backdoor: A natural backdoor attack on deep neural networks
Recent studies have shown that DNNs can be compromised by backdoor attacks crafted at
training time. A backdoor attack installs a backdoor into the victim model by injecting a …
training time. A backdoor attack installs a backdoor into the victim model by injecting a …
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if
harnessed appropriately, may deliver the best of expectations over many application sectors …
harnessed appropriately, may deliver the best of expectations over many application sectors …
Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities
This survey paper discusses opportunities and threats of using artificial intelligence (AI)
technology in the manufacturing sector with consideration for offensive and defensive uses …
technology in the manufacturing sector with consideration for offensive and defensive uses …
Can you really backdoor federated learning?
The decentralized nature of federated learning makes detecting and defending against
adversarial attacks a challenging task. This paper focuses on backdoor attacks in the …
adversarial attacks a challenging task. This paper focuses on backdoor attacks in the …
Hidden trigger backdoor attacks
With the success of deep learning algorithms in various domains, studying adversarial
attacks to secure deep models in real world applications has become an important research …
attacks to secure deep models in real world applications has become an important research …