A comprehensive survey on deep clustering: Taxonomy, challenges, and future directions

S Zhou, H Xu, Z Zheng, J Chen, Z Li, J Bu, J Wu… - ACM Computing …, 2024 - dl.acm.org
Clustering is a fundamental machine learning task, which aim at assigning instances into
groups so that similar samples belong to the same cluster while dissimilar samples belong …

Transfer adaptation learning: A decade survey

L Zhang, X Gao - IEEE Transactions on Neural Networks and …, 2022 - ieeexplore.ieee.org
The world we see is ever-changing and it always changes with people, things, and the
environment. Domain is referred to as the state of the world at a certain moment. A research …

Part-based pseudo label refinement for unsupervised person re-identification

Y Cho, WJ Kim, S Hong… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Unsupervised person re-identification (re-ID) aims at learning discriminative representations
for person retrieval from unlabeled data. Recent techniques accomplish this task by using …

Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data

J Huang, D Guan, A **ao, S Lu - Advances in neural …, 2021 - proceedings.neurips.cc
Unsupervised domain adaptation aims to align a labeled source domain and an unlabeled
target domain, but it requires to access the source data which often raises concerns in data …

Self-paced contrastive learning with hybrid memory for domain adaptive object re-id

Y Ge, F Zhu, D Chen, R Zhao - Advances in neural …, 2020 - proceedings.neurips.cc
Abstract Domain adaptive object re-ID aims to transfer the learned knowledge from the
labeled source domain to the unlabeled target domain to tackle the open-class re …

Cross-modality person re-identification via modality confusion and center aggregation

X Hao, S Zhao, M Ye, J Shen - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Cross-modality person re-identification is a challenging task due to large cross-modality
discrepancy and intra-modality variations. Currently, most existing methods focus on …

Unsupervised person re-identification via multi-label classification

D Wang, S Zhang - … of the IEEE/CVF conference on …, 2020 - openaccess.thecvf.com
The challenge of unsupervised person re-identification (ReID) lies in learning discriminative
features without true labels. This paper formulates unsupervised person ReID as a multi …

Cluster contrast for unsupervised person re-identification

Z Dai, G Wang, W Yuan, S Zhu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Thanks to the recent research development in contrastive learning, the gap of visual
representation learning between supervised and unsupervised approaches has been …

Intra-inter camera similarity for unsupervised person re-identification

S Xuan, S Zhang - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Most of unsupervised person Re-Identification (Re-ID) works produce pseudo-labels by
measuring the feature similarity without considering the distribution discrepancy among …

Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering

JH Cho, U Mall, K Bala… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
We present a new framework for semantic segmentation without annotations via clustering.
Off-the-shelf clustering methods are limited to curated, single-label, and object-centric …