Adversarial machine learning for network intrusion detection systems: A comprehensive survey

K He, DD Kim, MR Asghar - IEEE Communications Surveys & …, 2023 - ieeexplore.ieee.org
Network-based Intrusion Detection System (NIDS) forms the frontline defence against
network attacks that compromise the security of the data, systems, and networks. In recent …

Explainable ai: A review of machine learning interpretability methods

P Linardatos, V Papastefanopoulos, S Kotsiantis - Entropy, 2020 - mdpi.com
Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption,
with machine learning systems demonstrating superhuman performance in a significant …

A survey on ChatGPT: AI-generated contents, challenges, and solutions

Y Wang, Y Pan, M Yan, Z Su… - IEEE Open Journal of the …, 2023 - ieeexplore.ieee.org
With the widespread use of large artificial intelligence (AI) models such as ChatGPT, AI-
generated content (AIGC) has garnered increasing attention and is leading a paradigm shift …

Factorizing knowledge in neural networks

X Yang, J Ye, X Wang - European Conference on Computer Vision, 2022 - Springer
In this paper, we explore a novel and ambitious knowledge-transfer task, termed Knowledge
Factorization (KF). The core idea of KF lies in the modularization and assemblability of …

Data collection and quality challenges in deep learning: A data-centric ai perspective

SE Whang, Y Roh, H Song, JG Lee - The VLDB Journal, 2023 - Springer
Data-centric AI is at the center of a fundamental shift in software engineering where machine
learning becomes the new software, powered by big data and computing infrastructure …

Data augmentation can improve robustness

SA Rebuffi, S Gowal, DA Calian… - Advances in …, 2021 - proceedings.neurips.cc
Adversarial training suffers from robust overfitting, a phenomenon where the robust test
accuracy starts to decrease during training. In this paper, we focus on reducing robust …

Knowledge distillation: A survey

J Gou, B Yu, SJ Maybank, D Tao - International Journal of Computer Vision, 2021 - Springer
In recent years, deep neural networks have been successful in both industry and academia,
especially for computer vision tasks. The great success of deep learning is mainly due to its …

A survey on machine learning techniques for cyber security in the last decade

K Shaukat, S Luo, V Varadharajan, IA Hameed… - IEEE …, 2020 - ieeexplore.ieee.org
Pervasive growth and usage of the Internet and mobile applications have expanded
cyberspace. The cyberspace has become more vulnerable to automated and prolonged …

Neural attention distillation: Erasing backdoor triggers from deep neural networks

Y Li, X Lyu, N Koren, L Lyu, B Li, X Ma - arxiv preprint arxiv:2101.05930, 2021 - arxiv.org
Deep neural networks (DNNs) are known vulnerable to backdoor attacks, a training time
attack that injects a trigger pattern into a small proportion of training data so as to control the …

Advances in adversarial attacks and defenses in computer vision: A survey

N Akhtar, A Mian, N Kardan, M Shah - IEEE Access, 2021 - ieeexplore.ieee.org
Deep Learning is the most widely used tool in the contemporary field of computer vision. Its
ability to accurately solve complex problems is employed in vision research to learn deep …