Federated learning for smart healthcare: A survey
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …
Shifting machine learning for healthcare from development to deployment and from models to data
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …
the automation of physician tasks as well as enhancements in clinical capabilities and …
Federated learning for healthcare: Systematic review and architecture proposal
The use of machine learning (ML) with electronic health records (EHR) is growing in
popularity as a means to extract knowledge that can improve the decision-making process in …
popularity as a means to extract knowledge that can improve the decision-making process in …
Blockchain-empowered federated learning: Challenges, solutions, and future directions
Federated learning is a privacy-preserving machine learning technique that trains models
across multiple devices holding local data samples without exchanging them. There are …
across multiple devices holding local data samples without exchanging them. There are …
[HTML][HTML] Federated learning for secure IoMT-applications in smart healthcare systems: A comprehensive review
Recent developments in the Internet of Things (IoT) and various communication
technologies have reshaped numerous application areas. Nowadays, IoT is assimilated into …
technologies have reshaped numerous application areas. Nowadays, IoT is assimilated into …
A review of applications in federated learning
L Li, Y Fan, M Tse, KY Lin - Computers & Industrial Engineering, 2020 - Elsevier
Federated Learning (FL) is a collaboratively decentralized privacy-preserving technology to
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …
Federated learning: A survey on enabling technologies, protocols, and applications
This paper provides a comprehensive study of Federated Learning (FL) with an emphasis
on enabling software and hardware platforms, protocols, real-life applications and use …
on enabling software and hardware platforms, protocols, real-life applications and use …
Federated learning in edge computing: a systematic survey
Edge Computing (EC) is a new architecture that extends Cloud Computing (CC) services
closer to data sources. EC combined with Deep Learning (DL) is a promising technology …
closer to data sources. EC combined with Deep Learning (DL) is a promising technology …
Federated learning in smart cities: Privacy and security survey
Over the last decade, smart cities (SC) have been developed worldwide. Implementing big
data and the internet of things improves the monitoring and integration of different …
data and the internet of things improves the monitoring and integration of different …
Federated learning in mobile edge networks: A comprehensive survey
In recent years, mobile devices are equipped with increasingly advanced sensing and
computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up …
computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up …