A comprehensive overview of large language models

H Naveed, AU Khan, S Qiu, M Saqib, S Anwar… - arxiv preprint arxiv …, 2023 - arxiv.org
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in
natural language processing tasks and beyond. This success of LLMs has led to a large …

Towards an understanding of large language models in software engineering tasks

Z Zheng, K Ning, Q Zhong, J Chen, W Chen… - Empirical Software …, 2025 - Springer
Abstract Large Language Models (LLMs) have drawn widespread attention and research
due to their astounding performance in text generation and reasoning tasks. Derivative …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arxiv preprint arxiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

The flan collection: Designing data and methods for effective instruction tuning

S Longpre, L Hou, T Vu, A Webson… - International …, 2023 - proceedings.mlr.press
We study the design decision of publicly available instruction tuning methods, by
reproducing and breaking down the development of Flan 2022 (Chung et al., 2022) …

Holistic evaluation of language models

P Liang, R Bommasani, T Lee, D Tsipras… - arxiv preprint arxiv …, 2022 - arxiv.org
Language models (LMs) are becoming the foundation for almost all major language
technologies, but their capabilities, limitations, and risks are not well understood. We present …

Bloom: A 176b-parameter open-access multilingual language model

T Le Scao, A Fan, C Akiki, E Pavlick, S Ilić, D Hesslow… - 2023 - inria.hal.science
Large language models (LLMs) have been shown to be able to perform new tasks based on
a few demonstrations or natural language instructions. While these capabilities have led to …

Scaling instruction-finetuned language models

HW Chung, L Hou, S Longpre, B Zoph, Y Tay… - Journal of Machine …, 2024 - jmlr.org
Finetuning language models on a collection of datasets phrased as instructions has been
shown to improve model performance and generalization to unseen tasks. In this paper we …

Scaling data-constrained language models

N Muennighoff, A Rush, B Barak… - Advances in …, 2024 - proceedings.neurips.cc
The current trend of scaling language models involves increasing both parameter count and
training dataset size. Extrapolating this trend suggests that training dataset size may soon be …

Crosslingual generalization through multitask finetuning

N Muennighoff, T Wang, L Sutawika, A Roberts… - arxiv preprint arxiv …, 2022 - arxiv.org
Multitask prompted finetuning (MTF) has been shown to help large language models
generalize to new tasks in a zero-shot setting, but so far explorations of MTF have focused …

Grounding language models to images for multimodal inputs and outputs

JY Koh, R Salakhutdinov… - … Conference on Machine …, 2023 - proceedings.mlr.press
We propose an efficient method to ground pretrained text-only language models to the
visual domain, enabling them to process arbitrarily interleaved image-and-text data, and …