Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on offline reinforcement learning: Taxonomy, review, and open problems
RF Prudencio, MROA Maximo… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
With the widespread adoption of deep learning, reinforcement learning (RL) has
experienced a dramatic increase in popularity, scaling to previously intractable problems …
experienced a dramatic increase in popularity, scaling to previously intractable problems …
Offline reinforcement learning: Tutorial, review, and perspectives on open problems
In this tutorial article, we aim to provide the reader with the conceptual tools needed to get
started on research on offline reinforcement learning algorithms: reinforcement learning …
started on research on offline reinforcement learning algorithms: reinforcement learning …
Decision transformer: Reinforcement learning via sequence modeling
We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence
modeling problem. This allows us to draw upon the simplicity and scalability of the …
modeling problem. This allows us to draw upon the simplicity and scalability of the …
The dormant neuron phenomenon in deep reinforcement learning
In this work we identify the dormant neuron phenomenon in deep reinforcement learning,
where an agent's network suffers from an increasing number of inactive neurons, thereby …
where an agent's network suffers from an increasing number of inactive neurons, thereby …
Offline reinforcement learning as one big sequence modeling problem
Reinforcement learning (RL) is typically viewed as the problem of estimating single-step
policies (for model-free RL) or single-step models (for model-based RL), leveraging the …
policies (for model-free RL) or single-step models (for model-based RL), leveraging the …
Causal machine learning: A survey and open problems
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods
that formalize the data-generation process as a structural causal model (SCM). This …
that formalize the data-generation process as a structural causal model (SCM). This …
Generative skill chaining: Long-horizon skill planning with diffusion models
Long-horizon tasks, usually characterized by complex subtask dependencies, present a
significant challenge in manipulation planning. Skill chaining is a practical approach to …
significant challenge in manipulation planning. Skill chaining is a practical approach to …
Masked world models for visual control
Visual model-based reinforcement learning (RL) has the potential to enable sample-efficient
robot learning from visual observations. Yet the current approaches typically train a single …
robot learning from visual observations. Yet the current approaches typically train a single …
Temporal difference learning for model predictive control
Data-driven model predictive control has two key advantages over model-free methods: a
potential for improved sample efficiency through model learning, and better performance as …
potential for improved sample efficiency through model learning, and better performance as …
Synthetic experience replay
A key theme in the past decade has been that when large neural networks and large
datasets combine they can produce remarkable results. In deep reinforcement learning (RL) …
datasets combine they can produce remarkable results. In deep reinforcement learning (RL) …