[HTML][HTML] Emotion recognition and artificial intelligence: A systematic review (2014–2023) and research recommendations

SK Khare, V Blanes-Vidal, ES Nadimi, UR Acharya - Information fusion, 2024 - Elsevier
Emotion recognition is the ability to precisely infer human emotions from numerous sources
and modalities using questionnaires, physical signals, and physiological signals. Recently …

Emotion recognition in EEG signals using deep learning methods: A review

M Jafari, A Shoeibi, M Khodatars… - Computers in Biology …, 2023 - Elsevier
Emotions are a critical aspect of daily life and serve a crucial role in human decision-making,
planning, reasoning, and other mental states. As a result, they are considered a significant …

EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network

S Liu, Z Wang, Y An, J Zhao, Y Zhao… - Knowledge-Based Systems, 2023 - Elsevier
Given the rapid development of brain–computer interfaces, emotion identification based on
EEG signals has emerged as a new study area with tremendous importance in recent years …

Deep imbalanced learning for multimodal emotion recognition in conversations

T Meng, Y Shou, W Ai, N Yin, K Li - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
The main task of multimodal emotion recognition in conversations (MERC) is to identify the
emotions in modalities, eg, text, audio, image, and video, which is a significant development …

Deep learning-based approach for emotion recognition using electroencephalography (EEG) signals using bi-directional long short-term memory (Bi-LSTM)

M Algarni, F Saeed, T Al-Hadhrami, F Ghabban… - Sensors, 2022 - mdpi.com
Emotions are an essential part of daily human communication. The emotional states and
dynamics of the brain can be linked by electroencephalography (EEG) signals that can be …

EEG-based emotion recognition using spatial-temporal graph convolutional LSTM with attention mechanism

L Feng, C Cheng, M Zhao, H Deng… - IEEE Journal of …, 2022 - ieeexplore.ieee.org
The dynamic uncertain relationship among each brain region is a necessary factor that limits
EEG-based emotion recognition. It is a thought-provoking problem to availably employ time …

Automatic eyeblink and muscular artifact detection and removal from EEG signals using k-nearest neighbor classifier and long short-term memory networks

R Ghosh, S Phadikar, N Deb, N Sinha… - IEEE Sensors …, 2023 - ieeexplore.ieee.org
Electroencephalogram (EEG) is often corrupted with artifacts originating from sources such
as eyes and muscles. Hybrid artifact removal methods often require human intervention for …

DeepThink IoT: the strength of deep learning in internet of things

D Thakur, JK Saini, S Srinivasan - Artificial Intelligence Review, 2023 - Springer
Abstract The integration of Deep Learning (DL) and the Internet of Things (IoT) has
revolutionized technology in the twenty-first century, enabling humans and machines to …

A transformer-based deep neural network model for SSVEP classification

J Chen, Y Zhang, Y Pan, P Xu, C Guan - Neural Networks, 2023 - Elsevier
Steady-state visual evoked potential (SSVEP) is one of the most commonly used control
signals in the brain–computer interface (BCI) systems. However, the conventional spatial …

EEG based emotion detection using fourth order spectral moment and deep learning

VM Joshi, RB Ghongade - Biomedical Signal Processing and Control, 2021 - Elsevier
This paper proposes emotion detection using Electroencephalography (EEG) signal based
on Linear Formulation of Differential Entropy (LF-D f E) feature extractor and BiLSTM …