[HTML][HTML] Next-generation energy systems for sustainable smart cities: Roles of transfer learning

Y Himeur, M Elnour, F Fadli, N Meskin, I Petri… - Sustainable Cities and …, 2022 - Elsevier
Smart cities attempt to reach net-zero emissions goals by reducing wasted energy while
improving grid stability and meeting service demand. This is possible by adopting next …

Small data challenges for intelligent prognostics and health management: a review

C Li, S Li, Y Feng, K Gryllias, F Gu, M Pecht - Artificial Intelligence Review, 2024 - Springer
Prognostics and health management (PHM) is critical for enhancing equipment reliability
and reducing maintenance costs, and research on intelligent PHM has made significant …

[HTML][HTML] Machine learning for biochemical engineering: A review

M Mowbray, T Savage, C Wu, Z Song, BA Cho… - Biochemical …, 2021 - Elsevier
The field of machine learning is comprised of techniques, which have proven powerful
approaches to knowledge discovery and construction of 'digital twins' in the highly …

Transfer learning in breast cancer diagnoses via ultrasound imaging

G Ayana, K Dese, S Choe - Cancers, 2021 - mdpi.com
Simple Summary Transfer learning plays a major role in medical image analyses; however,
obtaining adequate training image datasets for machine learning algorithms can be …

Machine learning in bioprocess development: from promise to practice

LM Helleckes, J Hemmerich, W Wiechert… - Trends in …, 2023 - cell.com
Fostered by novel analytical techniques, digitalization, and automation, modern bioprocess
development provides large amounts of heterogeneous experimental data, containing …

Deep learning-based fault diagnosis of photovoltaic systems: A comprehensive review and enhancement prospects

M Mansouri, M Trabelsi, H Nounou, M Nounou - IEEE Access, 2021 - ieeexplore.ieee.org
Photovoltaic (PV) systems are subject to failures during their operation due to the aging
effects and external/environmental conditions. These faults may affect the different system …

Transfer learning for prognostics and health management: Advances, challenges, and opportunities

R Yan, W Li, S Lu, M **a, Z Chen, Z Zhou… - Journal of Dynamics …, 2024 - ojs.istp-press.com
As failure data is usually scarce in practice upon preventive maintenance strategy in
prognostics and health management (PHM) domain, transfer learning provides a …

A systematic literature review on transfer learning for predictive maintenance in industry 4.0

MS Azari, F Flammini, S Santini, M Caporuscio - IEEE access, 2023 - ieeexplore.ieee.org
The advent of Industry 4.0 has resulted in the widespread usage of novel paradigms and
digital technologies within industrial production and manufacturing systems. The objective of …

[HTML][HTML] Combining multi-fidelity modelling and asynchronous batch Bayesian Optimization

JP Folch, RM Lee, B Shafei, D Walz, C Tsay… - Computers & Chemical …, 2023 - Elsevier
Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical,
sequential setting of Bayesian Optimization does not translate well into laboratory …

Fully simulated-data-driven transfer-learning method for rolling-bearing-fault diagnosis

T Ai, Z Liu, J Zhang, H Liu, Y **… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Transfer learning has been applied to deal with the insufficient labeled target dataset
problem in data-driven fault diagnosis. However, most existing solutions cannot work well …