Artificial intelligence in the creative industries: a review

N Anantrasirichai, D Bull - Artificial intelligence review, 2022 - Springer
This paper reviews the current state of the art in artificial intelligence (AI) technologies and
applications in the context of the creative industries. A brief background of AI, and …

The emerging trends of multi-label learning

W Liu, H Wang, X Shen… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Exabytes of data are generated daily by humans, leading to the growing needs for new
efforts in dealing with the grand challenges for multi-label learning brought by big data. For …

Asymmetric loss for multi-label classification

T Ridnik, E Ben-Baruch, N Zamir… - Proceedings of the …, 2021 - openaccess.thecvf.com
In a typical multi-label setting, a picture contains on average few positive labels, and many
negative ones. This positive-negative imbalance dominates the optimization process, and …

General multi-label image classification with transformers

J Lanchantin, T Wang, V Ordonez… - Proceedings of the …, 2021 - openaccess.thecvf.com
Multi-label image classification is the task of predicting a set of labels corresponding to
objects, attributes or other entities present in an image. In this work we propose the …

Query2label: A simple transformer way to multi-label classification

S Liu, L Zhang, X Yang, H Su, J Zhu - arxiv preprint arxiv:2107.10834, 2021 - arxiv.org
This paper presents a simple and effective approach to solving the multi-label classification
problem. The proposed approach leverages Transformer decoders to query the existence of …

Bernnet: Learning arbitrary graph spectral filters via bernstein approximation

M He, Z Wei, H Xu - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Many representative graph neural networks, $ eg $, GPR-GNN and ChebNet, approximate
graph convolutions with graph spectral filters. However, existing work either applies …

Convolutional neural networks on graphs with chebyshev approximation, revisited

M He, Z Wei, JR Wen - Advances in neural information …, 2022 - proceedings.neurips.cc
Designing spectral convolutional networks is a challenging problem in graph learning.
ChebNet, one of the early attempts, approximates the spectral graph convolutions using …

Residual attention: A simple but effective method for multi-label recognition

K Zhu, J Wu - Proceedings of the IEEE/CVF international …, 2021 - openaccess.thecvf.com
Multi-label image recognition is a challenging computer vision task of practical use.
Progresses in this area, however, are often characterized by complicated methods, heavy …

Dualcoop: Fast adaptation to multi-label recognition with limited annotations

X Sun, P Hu, K Saenko - Advances in Neural Information …, 2022 - proceedings.neurips.cc
Solving multi-label recognition (MLR) for images in the low-label regime is a challenging
task with many real-world applications. Recent work learns an alignment between textual …

Graph-based deep learning for medical diagnosis and analysis: past, present and future

D Ahmedt-Aristizabal, MA Armin, S Denman, C Fookes… - Sensors, 2021 - mdpi.com
With the advances of data-driven machine learning research, a wide variety of prediction
problems have been tackled. It has become critical to explore how machine learning and …