[HTML][HTML] Deep learning in multimodal remote sensing data fusion: A comprehensive review
With the extremely rapid advances in remote sensing (RS) technology, a great quantity of
Earth observation (EO) data featuring considerable and complicated heterogeneity are …
Earth observation (EO) data featuring considerable and complicated heterogeneity are …
Image fusion meets deep learning: A survey and perspective
Image fusion, which refers to extracting and then combining the most meaningful information
from different source images, aims to generate a single image that is more informative and …
from different source images, aims to generate a single image that is more informative and …
MATR: Multimodal medical image fusion via multiscale adaptive transformer
Owing to the limitations of imaging sensors, it is challenging to obtain a medical image that
simultaneously contains functional metabolic information and structural tissue details …
simultaneously contains functional metabolic information and structural tissue details …
YDTR: Infrared and visible image fusion via Y-shape dynamic transformer
Infrared and visible image fusion is aims to generate a composite image that can
simultaneously describe the salient target in the infrared image and texture details in the …
simultaneously describe the salient target in the infrared image and texture details in the …
Enhanced autoencoders with attention-embedded degradation learning for unsupervised hyperspectral image super-resolution
Recently, unmixing-based networks have shown significant potential in unsupervised
multispectral-aided hyperspectral image super-resolution (MS-aided HS-SR) task …
multispectral-aided hyperspectral image super-resolution (MS-aided HS-SR) task …
Multispectral and hyperspectral image fusion in remote sensing: A survey
G Vivone - Information Fusion, 2023 - Elsevier
The fusion of multispectral (MS) and hyperspectral (HS) images has recently been put in the
spotlight. The combination of high spatial resolution MS images with HS data showing a …
spotlight. The combination of high spatial resolution MS images with HS data showing a …
Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives
Analyzing satellite images and remote sensing (RS) data using artificial intelligence (AI)
tools and data fusion strategies has recently opened new perspectives for environmental …
tools and data fusion strategies has recently opened new perspectives for environmental …
Machine learning in pansharpening: A benchmark, from shallow to deep networks
Machine learning (ML) is influencing the literature in several research fields, often through
state-of-the-art approaches. In the past several years, ML has been explored for …
state-of-the-art approaches. In the past several years, ML has been explored for …
Zero-shot hyperspectral sharpening
Fusing hyperspectral images (HSIs) with multispectral images (MSIs) of higher spatial
resolution has become an effective way to sharpen HSIs. Recently, deep convolutional …
resolution has become an effective way to sharpen HSIs. Recently, deep convolutional …
PSRT: Pyramid shuffle-and-reshuffle transformer for multispectral and hyperspectral image fusion
A Transformer has received a lot of attention in computer vision. Because of global self-
attention, the computational complexity of Transformer is quadratic with the number of …
attention, the computational complexity of Transformer is quadratic with the number of …