A comprehensive survey of continual learning: theory, method and application
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
Continual learning of large language models: A comprehensive survey
The recent success of large language models (LLMs) trained on static, pre-collected,
general datasets has sparked numerous research directions and applications. One such …
general datasets has sparked numerous research directions and applications. One such …
Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
Class-incremental learning: A survey
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
Computationally budgeted continual learning: What does matter?
Continual Learning (CL) aims to sequentially train models on streams of incoming data that
vary in distribution by preserving previous knowledge while adapting to new data. Current …
vary in distribution by preserving previous knowledge while adapting to new data. Current …
Class-incremental continual learning into the extended der-verse
The staple of human intelligence is the capability of acquiring knowledge in a continuous
fashion. In stark contrast, Deep Networks forget catastrophically and, for this reason, the sub …
fashion. In stark contrast, Deep Networks forget catastrophically and, for this reason, the sub …
Pcr: Proxy-based contrastive replay for online class-incremental continual learning
Online class-incremental continual learning is a specific task of continual learning. It aims to
continuously learn new classes from data stream and the samples of data stream are seen …
continuously learn new classes from data stream and the samples of data stream are seen …
Probing representation forgetting in supervised and unsupervised continual learning
Continual Learning (CL) research typically focuses on tackling the phenomenon of
catastrophic forgetting in neural networks. Catastrophic forgetting is associated with an …
catastrophic forgetting in neural networks. Catastrophic forgetting is associated with an …
Online prototype learning for online continual learning
Online continual learning (CL) studies the problem of learning continuously from a single-
pass data stream while adapting to new data and mitigating catastrophic forgetting …
pass data stream while adapting to new data and mitigating catastrophic forgetting …
Real-time evaluation in online continual learning: A new hope
Abstract Current evaluations of Continual Learning (CL) methods typically assume that there
is no constraint on training time and computation. This is an unrealistic assumption for any …
is no constraint on training time and computation. This is an unrealistic assumption for any …