A review of data-driven fault detection and diagnostics for building HVAC systems

Z Chen, Z O'Neill, J Wen, O Pradhan, T Yang, X Lu… - Applied Energy, 2023 - Elsevier
With the wide adoption of building automation system, and the advancement of data,
sensing, and machine learning techniques, data-driven fault detection and diagnostics …

Artificial intelligence in green building

C Debrah, APC Chan, A Darko - Automation in Construction, 2022 - Elsevier
Abstract The Architecture, Engineering and Construction (AEC) sector faces severe
sustainability and efficiency challenges. The application of artificial intelligence in green …

Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods: A comprehensive review

MS Mirnaghi, F Haghighat - Energy and Buildings, 2020 - Elsevier
Abnormal operation of HVAC systems can result in an increase in energy usage as well as
poor indoor air quality, thermal discomfort, and low productivity. Building automated systems …

A review on fault detection and diagnosis techniques: basics and beyond

A Abid, MT Khan, J Iqbal - Artificial Intelligence Review, 2021 - Springer
Safety and reliability are absolutely important for modern sophisticated systems and
technologies. Therefore, malfunction monitoring capabilities are instilled in the system for …

A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems

J Chen, L Zhang, Y Li, Y Shi, X Gao, Y Hu - Renewable and Sustainable …, 2022 - Elsevier
Abstract Faults in Heating, Ventilation, and Air Conditioning (HVAC) systems of buildings
result in significant energy waste in building operation. With fast-growing sensing data …

Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future

Y Zhao, T Li, X Zhang, C Zhang - Renewable and Sustainable Energy …, 2019 - Elsevier
Artificial intelligence has showed powerful capacity in detecting and diagnosing faults of
building energy systems. This paper aims at making a comprehensive literature review of …

State-of-the-art on research and applications of machine learning in the building life cycle

T Hong, Z Wang, X Luo, W Zhang - Energy and Buildings, 2020 - Elsevier
Fueled by big data, powerful and affordable computing resources, and advanced algorithms,
machine learning has been explored and applied to buildings research for the past decades …

[HTML][HTML] A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis

Y Zhao, C Zhang, Y Zhang, Z Wang, J Li - Energy and Built Environment, 2020 - Elsevier
With the advent of the era of big data, buildings have become not only energy-intensive but
also data-intensive. Data mining technologies have been widely utilized to release the …

[HTML][HTML] Digital twin enabled fault detection and diagnosis process for building HVAC systems

X **e, J Merino, N Moretti, P Pauwels, JY Chang… - Automation in …, 2023 - Elsevier
The emerging concept of digital twins outlines the pathway towards intelligent buildings.
Although abundant building data carries an overwhelming amount of information, if not well …

A comprehensive review: Fault detection, diagnostics, prognostics, and fault modeling in HVAC systems

V Singh, J Mathur, A Bhatia - International Journal of Refrigeration, 2022 - Elsevier
This review study examines the latest research and developments in the fault detection and
diagnostics of Heating Ventilation and Air Conditioning (HVAC) systems. This review …