Deep learning for electroencephalogram (EEG) classification tasks: a review
Objective. Electroencephalography (EEG) analysis has been an important tool in
neuroscience with applications in neuroscience, neural engineering (eg Brain–computer …
neuroscience with applications in neuroscience, neural engineering (eg Brain–computer …
Deep learning-based electroencephalography analysis: a systematic review
Context. Electroencephalography (EEG) is a complex signal and can require several years
of training, as well as advanced signal processing and feature extraction methodologies to …
of training, as well as advanced signal processing and feature extraction methodologies to …
Data augmentation for deep-learning-based electroencephalography
Background Data augmentation (DA) has recently been demonstrated to achieve
considerable performance gains for deep learning (DL)—increased accuracy and stability …
considerable performance gains for deep learning (DL)—increased accuracy and stability …
EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges
Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those
using motor-imagery (MI) data, have the potential to become groundbreaking technologies …
using motor-imagery (MI) data, have the potential to become groundbreaking technologies …
Emotionmeter: A multimodal framework for recognizing human emotions
In this paper, we present a multimodal emotion recognition framework called EmotionMeter
that combines brain waves and eye movements. To increase the feasibility and wearability …
that combines brain waves and eye movements. To increase the feasibility and wearability …
Deep learning with convolutional neural networks for EEG decoding and visualization
RT Schirrmeister, JT Springenberg… - Human brain …, 2017 - Wiley Online Library
Deep learning with convolutional neural networks (deep ConvNets) has revolutionized
computer vision through end‐to‐end learning, that is, learning from the raw data. There is …
computer vision through end‐to‐end learning, that is, learning from the raw data. There is …
Applications of deep learning and reinforcement learning to biological data
Rapid advances in hardware-based technologies during the past decades have opened up
new possibilities for life scientists to gather multimodal data in various application domains …
new possibilities for life scientists to gather multimodal data in various application domains …
EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
Objective. Brain–computer interfaces (BCI) enable direct communication with a computer,
using neural activity as the control signal. This neural signal is generally chosen from a …
using neural activity as the control signal. This neural signal is generally chosen from a …
Learning temporal information for brain-computer interface using convolutional neural networks
Deep learning (DL) methods and architectures have been the state-of-the-art classification
algorithms for computer vision and natural language processing problems. However, the …
algorithms for computer vision and natural language processing problems. However, the …
EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation
Driver fatigue evaluation is of great importance for traffic safety and many intricate factors
would exacerbate the difficulty. In this paper, based on the spatial-temporal structure of …
would exacerbate the difficulty. In this paper, based on the spatial-temporal structure of …