Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …

Recent advances and clinical applications of deep learning in medical image analysis

X Chen, X Wang, K Zhang, KM Fung, TC Thai… - Medical image …, 2022 - Elsevier
Deep learning has received extensive research interest in develo** new medical image
processing algorithms, and deep learning based models have been remarkably successful …

Multiscale diff-changed feature fusion network for hyperspectral image change detection

F Luo, T Zhou, J Liu, T Guo, X Gong… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
For hyperspectral image (HSI) change detection (CD), multiscale features are usually used
to construct the detection models. However, the existing studies only consider the multiscale …

Federated learning enables big data for rare cancer boundary detection

S Pati, U Baid, B Edwards, M Sheller, SH Wang… - Nature …, 2022 - nature.com
Although machine learning (ML) has shown promise across disciplines, out-of-sample
generalizability is concerning. This is currently addressed by sharing multi-site data, but …

Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer

H Wang, P Cao, J Wang, OR Zaiane - Proceedings of the AAAI …, 2022 - ojs.aaai.org
Most recent semantic segmentation methods adopt a U-Net framework with an encoder-
decoder architecture. It is still challenging for U-Net with a simple skip connection scheme to …

Loss odyssey in medical image segmentation

J Ma, J Chen, M Ng, R Huang, Y Li, C Li, X Yang… - Medical image …, 2021 - Elsevier
The loss function is an important component in deep learning-based segmentation methods.
Over the past five years, many loss functions have been proposed for various segmentation …

nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

F Isensee, PF Jaeger, SAA Kohl, J Petersen… - Nature …, 2021 - nature.com
Biomedical imaging is a driver of scientific discovery and a core component of medical care
and is being stimulated by the field of deep learning. While semantic segmentation …

INet: convolutional networks for biomedical image segmentation

W Weng, X Zhu - Ieee Access, 2021 - ieeexplore.ieee.org
Encoder-decoder networks are state-of-the-art approaches to biomedical image
segmentation, but have two problems: ie, the widely used pooling operations may discard …

Sharp U-Net: Depthwise convolutional network for biomedical image segmentation

H Zunair, AB Hamza - Computers in biology and medicine, 2021 - Elsevier
The U-Net architecture, built upon the fully convolutional network, has proven to be effective
in biomedical image segmentation. However, U-Net applies skip connections to merge …

Unet++: Redesigning skip connections to exploit multiscale features in image segmentation

Z Zhou, MMR Siddiquee, N Tajbakhsh… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
The state-of-the-art models for medical image segmentation are variants of U-Net and fully
convolutional networks (FCN). Despite their success, these models have two limitations:(1) …