Deep learning in hydrology and water resources disciplines: Concepts, methods, applications, and research directions

KP Tripathy, AK Mishra - Journal of Hydrology, 2024 - Elsevier
Over the past few years, Deep Learning (DL) methods have garnered substantial
recognition within the field of hydrology and water resources applications. Beginning with a …

Pushing the frontiers in climate modelling and analysis with machine learning

V Eyring, WD Collins, P Gentine, EA Barnes… - Nature Climate …, 2024 - nature.com
Climate modelling and analysis are facing new demands to enhance projections and
climate information. Here we argue that now is the time to push the frontiers of machine …

Physics-informed machine learning: case studies for weather and climate modelling

K Kashinath, M Mustafa, A Albert… - … of the Royal …, 2021 - royalsocietypublishing.org
Machine learning (ML) provides novel and powerful ways of accurately and efficiently
recognizing complex patterns, emulating nonlinear dynamics, and predicting the spatio …

Big Data in Earth system science and progress towards a digital twin

X Li, M Feng, Y Ran, Y Su, F Liu, C Huang… - Nature Reviews Earth & …, 2023 - nature.com
The concept of a digital twin of Earth envisages the convergence of Big Earth Data with
physics-based models in an interactive computational framework that enables monitoring …

[PDF][PDF] Integrating physics-based modeling with machine learning: A survey

J Willard, X Jia, S Xu, M Steinbach… - arxiv preprint arxiv …, 2020 - beiyulincs.github.io
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …

Integrating scientific knowledge with machine learning for engineering and environmental systems

J Willard, X Jia, S Xu, M Steinbach, V Kumar - ACM Computing Surveys, 2022 - dl.acm.org
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …

What role does hydrological science play in the age of machine learning?

GS Nearing, F Kratzert, AK Sampson… - Water Resources …, 2021 - Wiley Online Library
This paper is derived from a keynote talk given at the Google's 2020 Flood Forecasting
Meets Machine Learning Workshop. Recent experiments applying deep learning to rainfall …

Machine learning for climate physics and simulations

CY Lai, P Hassanzadeh, A Sheshadri… - Annual Review of …, 2024 - annualreviews.org
We discuss the emerging advances and opportunities at the intersection of machine
learning (ML) and climate physics, highlighting the use of ML techniques, including …

Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems

L Liu, W Zhou, K Guan, B Peng, S Xu, J Tang… - Nature …, 2024 - nature.com
Accurate and cost-effective quantification of the carbon cycle for agroecosystems at decision-
relevant scales is critical to mitigating climate change and ensuring sustainable food …

Data‐driven equation discovery of ocean mesoscale closures

L Zanna, T Bolton - Geophysical Research Letters, 2020 - Wiley Online Library
The resolution of climate models is limited by computational cost. Therefore, we must rely on
parameterizations to represent processes occurring below the scale resolved by the models …