[BOOK][B] Handbook of linear algebra
L Hogben - 2006 - books.google.com
The Handbook of Linear Algebra provides comprehensive coverage of linear algebra
concepts, applications, and computational software packages in an easy-to-use handbook …
concepts, applications, and computational software packages in an easy-to-use handbook …
Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems
We present a randomized algorithm that on input a symmetric, weakly diagonally dominant n-
by-n matrix A with m nonzero entries and an n-vector b produces an ̃x such that ‖̃x …
by-n matrix A with m nonzero entries and an n-vector b produces an ̃x such that ‖̃x …
Approaching optimality for solving SDD linear systems
We present an algorithm that on input of an n-vertex m-edge weighted graph G and a value
k produces an incremental sparsifier ̂G with n-1+m/k edges, such that the relative condition …
k produces an incremental sparsifier ̂G with n-1+m/k edges, such that the relative condition …
Approximate gaussian elimination for laplacians-fast, sparse, and simple
We show how to perform sparse approximate Gaussian elimination for Laplacian matrices.
We present a simple, nearly linear time algorithm that approximates a Laplacian by the …
We present a simple, nearly linear time algorithm that approximates a Laplacian by the …
Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems
In this paper we show how to accelerate randomized coordinate descent methods and
achieve faster convergence rates without paying per-iteration costs in asymptotic running …
achieve faster convergence rates without paying per-iteration costs in asymptotic running …
A simple, combinatorial algorithm for solving SDD systems in nearly-linear time
In this paper, we present a simple combinatorial algorithm that solves symmetric diagonally
dominant (SDD) linear systems in nearly-linear time. It uses little of the machinery that …
dominant (SDD) linear systems in nearly-linear time. It uses little of the machinery that …
A nearly-m log n time solver for sdd linear systems
We present an improved algorithm for solving symmetrically diagonally dominant linear
systems. On input of an n× n symmetric diagonally dominant matrix A with m non-zero …
systems. On input of an n× n symmetric diagonally dominant matrix A with m non-zero …
Solving SDD linear systems in nearly mlog1/2n time
We show an algorithm for solving symmetric diagonally dominant (SDD) linear systems with
m non-zero entries to a relative error of ε in O (m log1/2 n log cn log (1/ε)) time. Our approach …
m non-zero entries to a relative error of ε in O (m log1/2 n log cn log (1/ε)) time. Our approach …
Lean algebraic multigrid (LAMG): Fast graph Laplacian linear solver
OE Livne, A Brandt - SIAM Journal on Scientific Computing, 2012 - SIAM
Laplacian matrices of graphs arise in large-scale computational applications such as
semisupervised machine learning; spectral clustering of images, genetic data, and web …
semisupervised machine learning; spectral clustering of images, genetic data, and web …
Solving sparse linear systems faster than matrix multiplication
Can linear systems be solved faster than matrix multiplication? While there has been
remarkable progress for the special cases of graph structured linear systems, in the general …
remarkable progress for the special cases of graph structured linear systems, in the general …