Obtaining genetics insights from deep learning via explainable artificial intelligence

G Novakovsky, N Dexter, MW Libbrecht… - Nature Reviews …, 2023 - nature.com
Artificial intelligence (AI) models based on deep learning now represent the state of the art
for making functional predictions in genomics research. However, the underlying basis on …

Current progress and open challenges for applying deep learning across the biosciences

N Sapoval, A Aghazadeh, MG Nute… - Nature …, 2022 - nature.com
Deep Learning (DL) has recently enabled unprecedented advances in one of the grand
challenges in computational biology: the half-century-old problem of protein structure …

Machine learning in drug discovery: a review

S Dara, S Dhamercherla, SS Jadav, CHM Babu… - Artificial intelligence …, 2022 - Springer
This review provides the feasible literature on drug discovery through ML tools and
techniques that are enforced in every phase of drug development to accelerate the research …

Class-incremental learning by knowledge distillation with adaptive feature consolidation

M Kang, J Park, B Han - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
We present a novel class incremental learning approach based on deep neural networks,
which continually learns new tasks with limited memory for storing examples in the previous …

Artificial intelligence to deep learning: machine intelligence approach for drug discovery

R Gupta, D Srivastava, M Sahu, S Tiwari, RK Ambasta… - Molecular …, 2021 - Springer
Drug designing and development is an important area of research for pharmaceutical
companies and chemical scientists. However, low efficacy, off-target delivery, time …

Review on Convolutional Neural Networks (CNN) in vegetation remote sensing

T Kattenborn, J Leitloff, F Schiefer, S Hinz - ISPRS journal of …, 2021 - Elsevier
Identifying and characterizing vascular plants in time and space is required in various
disciplines, eg in forestry, conservation and agriculture. Remote sensing emerged as a key …

AI in drug discovery and its clinical relevance

R Qureshi, M Irfan, TM Gondal, S Khan, J Wu, MU Hadi… - Heliyon, 2023 - cell.com
The COVID-19 pandemic has emphasized the need for novel drug discovery process.
However, the journey from conceptualizing a drug to its eventual implementation in clinical …

Artificial intelligence and machine learning technology driven modern drug discovery and development

C Sarkar, B Das, VS Rawat, JB Wahlang… - International Journal of …, 2023 - mdpi.com
The discovery and advances of medicines may be considered as the ultimate relevant
translational science effort that adds to human invulnerability and happiness. But advancing …

Partial success in closing the gap between human and machine vision

R Geirhos, K Narayanappa, B Mitzkus… - Advances in …, 2021 - proceedings.neurips.cc
A few years ago, the first CNN surpassed human performance on ImageNet. However, it
soon became clear that machines lack robustness on more challenging test cases, a major …

Universal differential equations for scientific machine learning

C Rackauckas, Y Ma, J Martensen, C Warner… - arxiv preprint arxiv …, 2020 - arxiv.org
In the context of science, the well-known adage" a picture is worth a thousand words" might
well be" a model is worth a thousand datasets." In this manuscript we introduce the SciML …