Diffusion models: A comprehensive survey of methods and applications

L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao… - ACM Computing …, 2023 - dl.acm.org
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …

Self-supervised learning for time series analysis: Taxonomy, progress, and prospects

K Zhang, Q Wen, C Zhang, R Cai, M **… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Self-supervised learning (SSL) has recently achieved impressive performance on various
time series tasks. The most prominent advantage of SSL is that it reduces the dependence …

Self-supervised contrastive pre-training for time series via time-frequency consistency

X Zhang, Z Zhao, T Tsiligkaridis… - Advances in Neural …, 2022 - proceedings.neurips.cc
Pre-training on time series poses a unique challenge due to the potential mismatch between
pre-training and target domains, such as shifts in temporal dynamics, fast-evolving trends …

Simmtm: A simple pre-training framework for masked time-series modeling

J Dong, H Wu, H Zhang, L Zhang… - Advances in Neural …, 2023 - proceedings.neurips.cc
Time series analysis is widely used in extensive areas. Recently, to reduce labeling
expenses and benefit various tasks, self-supervised pre-training has attracted immense …

Ts2vec: Towards universal representation of time series

Z Yue, Y Wang, J Duan, T Yang, C Huang… - Proceedings of the …, 2022 - ojs.aaai.org
This paper presents TS2Vec, a universal framework for learning representations of time
series in an arbitrary semantic level. Unlike existing methods, TS2Vec performs contrastive …

TEST: Text prototype aligned embedding to activate LLM's ability for time series

C Sun, H Li, Y Li, S Hong - arxiv preprint arxiv:2308.08241, 2023 - arxiv.org
This work summarizes two ways to accomplish Time-Series (TS) tasks in today's Large
Language Model (LLM) context: LLM-for-TS (model-centric) designs and trains a …

Deep contrastive representation learning with self-distillation

Z **ao, H **ng, B Zhao, R Qu, S Luo… - … on Emerging Topics …, 2023 - ieeexplore.ieee.org
Recently, contrastive learning (CL) is a promising way of learning discriminative
representations from time series data. In the representation hierarchy, semantic information …

Unsupervised time-series representation learning with iterative bilinear temporal-spectral fusion

L Yang, S Hong - International conference on machine …, 2022 - proceedings.mlr.press
Unsupervised/self-supervised time series representation learning is a challenging problem
because of its complex dynamics and sparse annotations. Existing works mainly adopt the …

Deep learning for time series classification and extrinsic regression: A current survey

N Mohammadi Foumani, L Miller, CW Tan… - ACM Computing …, 2024 - dl.acm.org
Time Series Classification and Extrinsic Regression are important and challenging machine
learning tasks. Deep learning has revolutionized natural language processing and computer …

Deep time series models: A comprehensive survey and benchmark

Y Wang, H Wu, J Dong, Y Liu, M Long… - arxiv preprint arxiv …, 2024 - arxiv.org
Time series, characterized by a sequence of data points arranged in a discrete-time order,
are ubiquitous in real-world applications. Different from other modalities, time series present …