When large language models meet personalization: Perspectives of challenges and opportunities
The advent of large language models marks a revolutionary breakthrough in artificial
intelligence. With the unprecedented scale of training and model parameters, the capability …
intelligence. With the unprecedented scale of training and model parameters, the capability …
From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
Bias and debias in recommender system: A survey and future directions
While recent years have witnessed a rapid growth of research papers on recommender
system (RS), most of the papers focus on inventing machine learning models to better fit …
system (RS), most of the papers focus on inventing machine learning models to better fit …
Reinforcement learning based recommender systems: A survey
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …
help us find our favorite items to purchase, our friends on social networks, and our favorite …
A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …
understanding, research in recommendation has shifted to inventing new recommender …
[HTML][HTML] Deep reinforcement learning in recommender systems: A survey and new perspectives
In light of the emergence of deep reinforcement learning (DRL) in recommender systems
research and several fruitful results in recent years, this survey aims to provide a timely and …
research and several fruitful results in recent years, this survey aims to provide a timely and …
Reinforcement knowledge graph reasoning for explainable recommendation
Recent advances in personalized recommendation have sparked great interest in the
exploitation of rich structured information provided by knowledge graphs. Unlike most …
exploitation of rich structured information provided by knowledge graphs. Unlike most …
Explainable recommendation: A survey and new perspectives
Explainable recommendation attempts to develop models that generate not only high-quality
recommendations but also intuitive explanations. The explanations may either be post-hoc …
recommendations but also intuitive explanations. The explanations may either be post-hoc …
Leveraging large language models in conversational recommender systems
L Friedman, S Ahuja, D Allen, Z Tan… - arxiv preprint arxiv …, 2023 - arxiv.org
A Conversational Recommender System (CRS) offers increased transparency and control to
users by enabling them to engage with the system through a real-time multi-turn dialogue …
users by enabling them to engage with the system through a real-time multi-turn dialogue …
Counterfactual explainable recommendation
By providing explanations for users and system designers to facilitate better understanding
and decision making, explainable recommendation has been an important research …
and decision making, explainable recommendation has been an important research …