Diffusion models: A comprehensive survey of methods and applications
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …
record-breaking performance in many applications, including image synthesis, video …
How close is chatgpt to human experts? comparison corpus, evaluation, and detection
The introduction of ChatGPT has garnered widespread attention in both academic and
industrial communities. ChatGPT is able to respond effectively to a wide range of human …
industrial communities. ChatGPT is able to respond effectively to a wide range of human …
Openood: Benchmarking generalized out-of-distribution detection
Abstract Out-of-distribution (OOD) detection is vital to safety-critical machine learning
applications and has thus been extensively studied, with a plethora of methods developed in …
applications and has thus been extensively studied, with a plethora of methods developed in …
Pyod: A python toolbox for scalable outlier detection
PyOD is an open-source Python toolbox for performing scalable outlier detection on
multivariate data. Uniquely, it provides access to a wide range of outlier detection …
multivariate data. Uniquely, it provides access to a wide range of outlier detection …
Ai for it operations (aiops) on cloud platforms: Reviews, opportunities and challenges
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big
data generated by IT Operations processes, particularly in cloud infrastructures, to provide …
data generated by IT Operations processes, particularly in cloud infrastructures, to provide …
Gadbench: Revisiting and benchmarking supervised graph anomaly detection
With a long history of traditional Graph Anomaly Detection (GAD) algorithms and recently
popular Graph Neural Networks (GNNs), it is still not clear (1) how they perform under a …
popular Graph Neural Networks (GNNs), it is still not clear (1) how they perform under a …
Bond: Benchmarking unsupervised outlier node detection on static attributed graphs
Detecting which nodes in graphs are outliers is a relatively new machine learning task with
numerous applications. Despite the proliferation of algorithms developed in recent years for …
numerous applications. Despite the proliferation of algorithms developed in recent years for …
Prototypical residual networks for anomaly detection and localization
Anomaly detection and localization are widely used in industrial manufacturing for its
efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models …
efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models …
Softpatch: Unsupervised anomaly detection with noisy data
Although mainstream unsupervised anomaly detection (AD) algorithms perform well in
academic datasets, their performance is limited in practical application due to the ideal …
academic datasets, their performance is limited in practical application due to the ideal …
Adgym: Design choices for deep anomaly detection
Deep learning (DL) techniques have recently found success in anomaly detection (AD)
across various fields such as finance, medical services, and cloud computing. However …
across various fields such as finance, medical services, and cloud computing. However …