Knowledge graphs: Opportunities and challenges

C Peng, F **a, M Naseriparsa, F Osborne - Artificial Intelligence Review, 2023 - Springer
With the explosive growth of artificial intelligence (AI) and big data, it has become vitally
important to organize and represent the enormous volume of knowledge appropriately. As …

From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai

M Nauta, J Trienes, S Pathak, E Nguyen… - ACM Computing …, 2023 - dl.acm.org
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …

Drivelm: Driving with graph visual question answering

C Sima, K Renz, K Chitta, L Chen, H Zhang… - … on Computer Vision, 2024 - Springer
We study how vision-language models (VLMs) trained on web-scale data can be integrated
into end-to-end driving systems to boost generalization and enable interactivity with human …

Knowledge graph contrastive learning for recommendation

Y Yang, C Huang, L **a, C Li - … of the 45th international ACM SIGIR …, 2022 - dl.acm.org
Knowledge Graphs (KGs) have been utilized as useful side information to improve
recommendation quality. In those recommender systems, knowledge graph information …

A survey of graph neural networks for recommender systems: Challenges, methods, and directions

C Gao, Y Zheng, N Li, Y Li, Y Qin, J Piao… - ACM Transactions on …, 2023 - dl.acm.org
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …

[HTML][HTML] A systematic review of explainable artificial intelligence in terms of different application domains and tasks

MR Islam, MU Ahmed, S Barua, S Begum - Applied Sciences, 2022 - mdpi.com
Artificial intelligence (AI) and machine learning (ML) have recently been radically improved
and are now being employed in almost every application domain to develop automated or …

Knowledge graph self-supervised rationalization for recommendation

Y Yang, C Huang, L **a, C Huang - … of the 29th ACM SIGKDD conference …, 2023 - dl.acm.org
In this paper, we introduce a new self-supervised rationalization method, called KGRec, for
knowledge-aware recommender systems. To effectively identify informative knowledge …

Graph neural networks in recommender systems: a survey

S Wu, F Sun, W Zhang, X **e, B Cui - ACM Computing Surveys, 2022 - dl.acm.org
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …

A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation

L Wu, X He, X Wang, K Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …

Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things

J Zhang, D Tao - IEEE Internet of Things Journal, 2020 - ieeexplore.ieee.org
In the Internet-of-Things (IoT) era, billions of sensors and devices collect and process data
from the environment, transmit them to cloud centers, and receive feedback via the Internet …