Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

Federated learning for smart healthcare: A survey

DC Nguyen, QV Pham, PN Pathirana, M Ding… - ACM Computing …, 2022 - dl.acm.org
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …

Learn from others and be yourself in heterogeneous federated learning

W Huang, M Ye, B Du - … of the IEEE/CVF Conference on …, 2022 - openaccess.thecvf.com
Federated learning has emerged as an important distributed learning paradigm, which
normally involves collaborative updating with others and local updating on private data …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y ** - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …

Model-contrastive federated learning

Q Li, B He, D Song - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Federated learning enables multiple parties to collaboratively train a machine learning
model without communicating their local data. A key challenge in federated learning is to …

Federated learning for generalization, robustness, fairness: A survey and benchmark

W Huang, M Ye, Z Shi, G Wan, H Li… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …

No fear of heterogeneity: Classifier calibration for federated learning with non-iid data

M Luo, F Chen, D Hu, Y Zhang… - Advances in Neural …, 2021 - proceedings.neurips.cc
A central challenge in training classification models in the real-world federated system is
learning with non-IID data. To cope with this, most of the existing works involve enforcing …

Federated learning with label distribution skew via logits calibration

J Zhang, Z Li, B Li, J Xu, S Wu… - … on Machine Learning, 2022 - proceedings.mlr.press
Traditional federated optimization methods perform poorly with heterogeneous data (ie,
accuracy reduction), especially for highly skewed data. In this paper, we investigate the label …

Note: Robust continual test-time adaptation against temporal correlation

T Gong, J Jeong, T Kim, Y Kim… - Advances in Neural …, 2022 - proceedings.neurips.cc
Test-time adaptation (TTA) is an emerging paradigm that addresses distributional shifts
between training and testing phases without additional data acquisition or labeling cost; only …

A survey on federated learning systems: Vision, hype and reality for data privacy and protection

Q Li, Z Wen, Z Wu, S Hu, N Wang, Y Li… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
As data privacy increasingly becomes a critical societal concern, federated learning has
been a hot research topic in enabling the collaborative training of machine learning models …