A survey of knowledge graph reasoning on graph types: Static, dynamic, and multi-modal

K Liang, L Meng, M Liu, Y Liu, W Tu… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on
mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research …

Hard sample aware network for contrastive deep graph clustering

Y Liu, X Yang, S Zhou, X Liu, Z Wang, K Liang… - Proceedings of the …, 2023 - ojs.aaai.org
Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via
contrastive mechanisms, is a challenging research spot. Among the recent works, hard …

Cluster-guided contrastive graph clustering network

X Yang, Y Liu, S Zhou, S Wang, W Tu… - Proceedings of the …, 2023 - ojs.aaai.org
Benefiting from the intrinsic supervision information exploitation capability, contrastive
learning has achieved promising performance in the field of deep graph clustering recently …

Learn from relational correlations and periodic events for temporal knowledge graph reasoning

K Liang, L Meng, M Liu, Y Liu, W Tu, S Wang… - Proceedings of the 46th …, 2023 - dl.acm.org
Reasoning on temporal knowledge graphs (TKGR), aiming to infer missing events along the
timeline, has been widely studied to alleviate incompleteness issues in TKG, which is …

Convert: Contrastive graph clustering with reliable augmentation

X Yang, C Tan, Y Liu, K Liang, S Wang… - Proceedings of the 31st …, 2023 - dl.acm.org
Contrastive graph node clustering via learnable data augmentation is a hot research spot in
the field of unsupervised graph learning. The existing methods learn the sampling …

Self-supervised temporal graph learning with temporal and structural intensity alignment

M Liu, K Liang, Y Zhao, W Tu, S Zhou… - … on Neural Networks …, 2024 - ieeexplore.ieee.org
Temporal graph learning aims to generate high-quality representations for graph-based
tasks with dynamic information, which has recently garnered increasing attention. In contrast …

Tmac: Temporal multi-modal graph learning for acoustic event classification

M Liu, K Liang, D Hu, H Yu, Y Liu, L Meng… - Proceedings of the 31st …, 2023 - dl.acm.org
Audiovisual data is everywhere in this digital age, which raises higher requirements for the
deep learning models developed on them. To well handle the information of the multi-modal …

Efficient multi-view graph clustering with local and global structure preservation

Y Wen, S Liu, X Wan, S Wang, K Liang, X Liu… - Proceedings of the 31st …, 2023 - dl.acm.org
Anchor-based multi-view graph clustering (AMVGC) has received abundant attention owing
to its high efficiency and the capability to capture complementary structural information …

DCOM-GNN: A deep clustering optimization method for graph neural networks

H Yang, J Wang, R Duan, C Yan - Knowledge-Based Systems, 2023 - Elsevier
Deep clustering plays an important role in data analysis, and with the prevalence of graph
data nowadays, various deep clustering models on graph are constantly proposed …

One-step multi-view clustering with diverse representation

X Wan, J Liu, X Gan, X Liu, S Wang… - … on Neural Networks …, 2024 - ieeexplore.ieee.org
Multi-View clustering has attracted broad attention due to its capacity to utilize consistent
and complementary information among views. Although tremendous progress has been …