Understanding of machine learning with deep learning: architectures, workflow, applications and future directions
MM Taye - Computers, 2023 - mdpi.com
In recent years, deep learning (DL) has been the most popular computational approach in
the field of machine learning (ML), achieving exceptional results on a variety of complex …
the field of machine learning (ML), achieving exceptional results on a variety of complex …
Graph neural networks in recommender systems: a survey
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …
alleviate such information overload. Due to the important application value of recommender …
Hypergraph contrastive collaborative filtering
Collaborative Filtering (CF) has emerged as fundamental paradigms for parameterizing
users and items into latent representation space, with their correlative patterns from …
users and items into latent representation space, with their correlative patterns from …
Knowledge graph contrastive learning for recommendation
Knowledge Graphs (KGs) have been utilized as useful side information to improve
recommendation quality. In those recommender systems, knowledge graph information …
recommendation quality. In those recommender systems, knowledge graph information …
Large language models as zero-shot conversational recommenders
In this paper, we present empirical studies on conversational recommendation tasks using
representative large language models in a zero-shot setting with three primary …
representative large language models in a zero-shot setting with three primary …
Disentangled graph collaborative filtering
Learning informative representations of users and items from the interaction data is of crucial
importance to collaborative filtering (CF). Present embedding functions exploit user-item …
importance to collaborative filtering (CF). Present embedding functions exploit user-item …
Autoencoders
An autoencoder is a specific type of a neural network, which is mainly designed to encode
the input into a compressed and meaningful representation and then decode it back such …
the input into a compressed and meaningful representation and then decode it back such …
A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …
understanding, research in recommendation has shifted to inventing new recommender …
Dive into deep learning
This open-source book represents our attempt to make deep learning approachable,
teaching readers the concepts, the context, and the code. The entire book is drafted in …
teaching readers the concepts, the context, and the code. The entire book is drafted in …
A comprehensive survey and analysis of generative models in machine learning
Generative models have been in existence for many decades. In the field of machine
learning, we come across many scenarios when directly learning a target is intractable …
learning, we come across many scenarios when directly learning a target is intractable …