Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Long sequence time-series forecasting with deep learning: A survey
The development of deep learning technology has brought great improvements to the field
of time series forecasting. Short sequence time-series forecasting no longer satisfies the …
of time series forecasting. Short sequence time-series forecasting no longer satisfies the …
Self-supervised learning for time series analysis: Taxonomy, progress, and prospects
Self-supervised learning (SSL) has recently achieved impressive performance on various
time series tasks. The most prominent advantage of SSL is that it reduces the dependence …
time series tasks. The most prominent advantage of SSL is that it reduces the dependence …
Time-llm: Time series forecasting by reprogramming large language models
Time series forecasting holds significant importance in many real-world dynamic systems
and has been extensively studied. Unlike natural language process (NLP) and computer …
and has been extensively studied. Unlike natural language process (NLP) and computer …
One fits all: Power general time series analysis by pretrained lm
Although we have witnessed great success of pre-trained models in natural language
processing (NLP) and computer vision (CV), limited progress has been made for general …
processing (NLP) and computer vision (CV), limited progress has been made for general …
Frequency-domain mlps are more effective learners in time series forecasting
Time series forecasting has played the key role in different industrial, including finance,
traffic, energy, and healthcare domains. While existing literatures have designed many …
traffic, energy, and healthcare domains. While existing literatures have designed many …
A decoder-only foundation model for time-series forecasting
Motivated by recent advances in large language models for Natural Language Processing
(NLP), we design a time-series foundation model for forecasting whose out-of-the-box zero …
(NLP), we design a time-series foundation model for forecasting whose out-of-the-box zero …
Timesnet: Temporal 2d-variation modeling for general time series analysis
Time series analysis is of immense importance in extensive applications, such as weather
forecasting, anomaly detection, and action recognition. This paper focuses on temporal …
forecasting, anomaly detection, and action recognition. This paper focuses on temporal …
Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting
Recently many deep models have been proposed for multivariate time series (MTS)
forecasting. In particular, Transformer-based models have shown great potential because …
forecasting. In particular, Transformer-based models have shown great potential because …