Bias mitigation for machine learning classifiers: A comprehensive survey

M Hort, Z Chen, JM Zhang, M Harman… - ACM Journal on …, 2024 - dl.acm.org
This article provides a comprehensive survey of bias mitigation methods for achieving
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …

A survey on datasets for fairness‐aware machine learning

T Le Quy, A Roy, V Iosifidis, W Zhang… - … Reviews: Data Mining …, 2022 - Wiley Online Library
As decision‐making increasingly relies on machine learning (ML) and (big) data, the issue
of fairness in data‐driven artificial intelligence systems is receiving increasing attention from …

Towards out-of-distribution generalization: A survey

J Liu, Z Shen, Y He, X Zhang, R Xu, H Yu… - arxiv preprint arxiv …, 2021 - arxiv.org
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …

Data-centric artificial intelligence: A survey

D Zha, ZP Bhat, KH Lai, F Yang, Z Jiang… - ACM Computing …, 2023 - dl.acm.org
Artificial Intelligence (AI) is making a profound impact in almost every domain. A vital enabler
of its great success is the availability of abundant and high-quality data for building machine …

Prediction-powered inference

AN Angelopoulos, S Bates, C Fannjiang, MI Jordan… - Science, 2023 - science.org
Prediction-powered inference is a framework for performing valid statistical inference when
an experimental dataset is supplemented with predictions from a machine-learning system …

Fairfed: Enabling group fairness in federated learning

YH Ezzeldin, S Yan, C He, E Ferrara… - Proceedings of the AAAI …, 2023 - ojs.aaai.org
Training ML models which are fair across different demographic groups is of critical
importance due to the increased integration of ML in crucial decision-making scenarios such …

On the need for a language describing distribution shifts: Illustrations on tabular datasets

J Liu, T Wang, P Cui… - Advances in Neural …, 2024 - proceedings.neurips.cc
Different distribution shifts require different algorithmic and operational interventions.
Methodological research must be grounded by the specific shifts they address. Although …

Picking on the same person: Does algorithmic monoculture lead to outcome homogenization?

R Bommasani, KA Creel, A Kumar… - Advances in …, 2022 - proceedings.neurips.cc
As the scope of machine learning broadens, we observe a recurring theme of algorithmic
monoculture: the same systems, or systems that share components (eg datasets, models) …

[图书][B] Fairness and machine learning: Limitations and opportunities

S Barocas, M Hardt, A Narayanan - 2023 - books.google.com
An introduction to the intellectual foundations and practical utility of the recent work on
fairness and machine learning. Fairness and Machine Learning introduces advanced …

Understanding the role of human intuition on reliance in human-AI decision-making with explanations

V Chen, QV Liao, J Wortman Vaughan… - Proceedings of the ACM …, 2023 - dl.acm.org
AI explanations are often mentioned as a way to improve human-AI decision-making, but
empirical studies have not found consistent evidence of explanations' effectiveness and, on …