A comprehensive survey on pretrained foundation models: A history from bert to chatgpt
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …
A comprehensive survey on applications of transformers for deep learning tasks
Abstract Transformers are Deep Neural Networks (DNN) that utilize a self-attention
mechanism to capture contextual relationships within sequential data. Unlike traditional …
mechanism to capture contextual relationships within sequential data. Unlike traditional …
A foundation model for clinical-grade computational pathology and rare cancers detection
The analysis of histopathology images with artificial intelligence aims to enable clinical
decision support systems and precision medicine. The success of such applications …
decision support systems and precision medicine. The success of such applications …
Scaling vision transformers to 22 billion parameters
The scaling of Transformers has driven breakthrough capabilities for language models. At
present, the largest large language models (LLMs) contain upwards of 100B parameters …
present, the largest large language models (LLMs) contain upwards of 100B parameters …
Symbolic discovery of optimization algorithms
We present a method to formulate algorithm discovery as program search, and apply it to
discover optimization algorithms for deep neural network training. We leverage efficient …
discover optimization algorithms for deep neural network training. We leverage efficient …
Reproducible scaling laws for contrastive language-image learning
Scaling up neural networks has led to remarkable performance across a wide range of
tasks. Moreover, performance often follows reliable scaling laws as a function of training set …
tasks. Moreover, performance often follows reliable scaling laws as a function of training set …
Cellpose 2.0: how to train your own model
Pretrained neural network models for biological segmentation can provide good out-of-the-
box results for many image types. However, such models do not allow users to adapt the …
box results for many image types. However, such models do not allow users to adapt the …
Segnext: Rethinking convolutional attention design for semantic segmentation
We present SegNeXt, a simple convolutional network architecture for semantic
segmentation. Recent transformer-based models have dominated the field of se-mantic …
segmentation. Recent transformer-based models have dominated the field of se-mantic …
Synthetic data from diffusion models improves imagenet classification
Deep generative models are becoming increasingly powerful, now generating diverse high
fidelity photo-realistic samples given text prompts. Have they reached the point where …
fidelity photo-realistic samples given text prompts. Have they reached the point where …
Laion-5b: An open large-scale dataset for training next generation image-text models
C Schuhmann, R Beaumont, R Vencu… - Advances in …, 2022 - proceedings.neurips.cc
Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of
training on large amounts of noisy image-text data, without relying on expensive accurate …
training on large amounts of noisy image-text data, without relying on expensive accurate …