A review of generalized zero-shot learning methods

F Pourpanah, M Abdar, Y Luo, X Zhou… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples
under the condition that some output classes are unknown during supervised learning. To …

Msdn: Mutually semantic distillation network for zero-shot learning

S Chen, Z Hong, GS **e, W Yang… - Proceedings of the …, 2022 - openaccess.thecvf.com
The key challenge of zero-shot learning (ZSL) is how to infer the latent semantic knowledge
between visual and attribute features on seen classes, and thus achieving a desirable …

Contrastive embedding for generalized zero-shot learning

Z Han, Z Fu, S Chen, J Yang - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and
unseen classes, when only the labeled examples from seen classes are provided. Recent …

Free: Feature refinement for generalized zero-shot learning

S Chen, W Wang, B **a, Q Peng… - Proceedings of the …, 2021 - openaccess.thecvf.com
Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts
dedicated to overcoming the problems of visual-semantic domain gaps and seen-unseen …

Progressive semantic-visual mutual adaption for generalized zero-shot learning

M Liu, F Li, C Zhang, Y Wei, H Bai… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Generalized Zero-Shot Learning (GZSL) identifies unseen categories by knowledge
transferred from the seen domain, relying on the intrinsic interactions between visual and …

Graph knows unknowns: Reformulate zero-shot learning as sample-level graph recognition

J Guo, S Guo, Q Zhou, Z Liu, X Lu, F Huo - Proceedings of the AAAI …, 2023 - ojs.aaai.org
Zero-shot learning (ZSL) is an extreme case of transfer learning that aims to recognize
samples (eg, images) of unseen classes relying on a train-set covering only seen classes …

Progressive semantic-guided vision transformer for zero-shot learning

S Chen, W Hou, S Khan… - Proceedings of the IEEE …, 2024 - openaccess.thecvf.com
Zero-shot learning (ZSL) recognizes the unseen classes by conducting visual-semantic
interactions to transfer semantic knowledge from seen classes to unseen ones supported by …

Counterfactual zero-shot and open-set visual recognition

Z Yue, T Wang, Q Sun, XS Hua… - Proceedings of the …, 2021 - openaccess.thecvf.com
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-
Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by …

Towards zero-shot learning: A brief review and an attention-based embedding network

GS **e, Z Zhang, H **ong, L Shao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Zero-shot learning (ZSL), an emerging topic in recent years, targets at distinguishing unseen
class images by taking images from seen classes for training the classifier. Existing works …

Attribute prototype network for zero-shot learning

W Xu, Y **an, J Wang, B Schiele… - Advances in Neural …, 2020 - proceedings.neurips.cc
From the beginning of zero-shot learning research, visual attributes have been shown to
play an important role. In order to better transfer attribute-based knowledge from known to …