Polymer semiconductors: synthesis, processing, and applications

L Ding, ZD Yu, XY Wang, ZF Yao, Y Lu… - Chemical …, 2023 - ACS Publications
Polymer semiconductors composed of a carbon-based π conjugated backbone have been
studied for several decades as active layers of multifarious organic electronic devices. They …

Unconventional thermoelectric materials for energy harvesting and sensing applications

M Massetti, F Jiao, AJ Ferguson, D Zhao… - Chemical …, 2021 - ACS Publications
Heat is an abundant but often wasted source of energy. Thus, harvesting just a portion of this
tremendous amount of energy holds significant promise for a more sustainable society …

Flexible thermoelectric materials and devices: From materials to applications

L Zhang, XL Shi, YL Yang, ZG Chen - Materials today, 2021 - Elsevier
With the ever-growing development of multifunctional and miniature electronics, the
exploring of high-power microwatt-milliwatt self-charging technology is highly essential …

Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications

S Xu, XL Shi, M Dargusch, C Di, J Zou… - Progress in Materials …, 2021 - Elsevier
Conducting polymers have drawn considerable attention in the field of wearable and
implantable thermoelectric devices due to their unique advantages, including availability …

Flexible thermoelectric materials and generators: challenges and innovations

Y Wang, L Yang, XL Shi, X Shi, L Chen… - Advanced …, 2019 - Wiley Online Library
The urgent need for ecofriendly, stable, long‐lifetime power sources is driving the booming
market for miniaturized and integrated electronics, including wearable and medical …

Progress in understanding structure and transport properties of PEDOT-based materials: A critical review

MN Gueye, A Carella, J Faure-Vincent… - Progress in Materials …, 2020 - Elsevier
Since the late'80s, a highly stable conductive polymer has been developed, that is poly (3, 4-
ethylene dioxythiophene), also known as PEDOT. Its increasing conductivity throughout the …

Thermoelectric materials and applications for energy harvesting power generation

I Petsagkourakis, K Tybrandt, X Crispin… - … and technology of …, 2018 - Taylor & Francis
Thermoelectrics, in particular solid-state conversion of heat to electricity, is expected to be a
key energy harvesting technology to power ubiquitous sensors and wearable devices in the …

Mimicking associative learning using an ion-trap** non-volatile synaptic organic electrochemical transistor

X Ji, BD Paulsen, GKK Chik, R Wu, Y Yin… - Nature …, 2021 - nature.com
Associative learning, a critical learning principle to improve an individual's adaptability, has
been emulated by few organic electrochemical devices. However, complicated bias …

A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications

G Prunet, F Pawula, G Fleury, E Cloutet… - Materials Today …, 2021 - Elsevier
There is a growing demand for flexible and wearable next-generation electronic devices that
must be capable of bending and stretching under mechanical deformation. In this regard …

Thermoelectric properties of PEDOT: PSS

Z Fan, J Ouyang - Advanced Electronic Materials, 2019 - Wiley Online Library
Nowadays, organic thermoelectric (TE) materials have attracted considerable attention due
to their unique merits, eg, light‐weight, high mechanical flexibility, nontoxicity, easy …