Artificial intelligence for geoscience: Progress, challenges and perspectives

T Zhao, S Wang, C Ouyang, M Chen, C Liu, J Zhang… - The Innovation, 2024 - cell.com
This paper explores the evolution of geoscientific inquiry, tracing the progression from
traditional physics-based models to modern data-driven approaches facilitated by significant …

[HTML][HTML] Deep learning in multimodal remote sensing data fusion: A comprehensive review

J Li, D Hong, L Gao, J Yao, K Zheng, B Zhang… - International Journal of …, 2022 - Elsevier
With the extremely rapid advances in remote sensing (RS) technology, a great quantity of
Earth observation (EO) data featuring considerable and complicated heterogeneity are …

SpectralGPT: Spectral remote sensing foundation model

D Hong, B Zhang, X Li, Y Li, C Li, J Yao… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
The foundation model has recently garnered significant attention due to its potential to
revolutionize the field of visual representation learning in a self-supervised manner. While …

Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities

L Zhang, L Zhang - IEEE Geoscience and Remote Sensing …, 2022 - ieeexplore.ieee.org
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …

[HTML][HTML] Review of image classification algorithms based on convolutional neural networks

L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …

UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery

L Wang, R Li, C Zhang, S Fang, C Duan, X Meng… - ISPRS Journal of …, 2022 - Elsevier
Semantic segmentation of remotely sensed urban scene images is required in a wide range
of practical applications, such as land cover map**, urban change detection …

A survey of uncertainty in deep neural networks

J Gawlikowski, CRN Tassi, M Ali, J Lee, M Humt… - Artificial Intelligence …, 2023 - Springer
Over the last decade, neural networks have reached almost every field of science and
become a crucial part of various real world applications. Due to the increasing spread …

WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection

AM Roy, J Bhaduri, T Kumar, K Raj - Ecological Informatics, 2023 - Elsevier
Objective. With climatic instability, various ecological disturbances, and human actions
threaten the existence of various endangered wildlife species. Therefore, an up-to-date …

[HTML][HTML] The role of deep learning in urban water management: A critical review

G Fu, Y **, S Sun, Z Yuan, D Butler - Water Research, 2022 - Elsevier
Deep learning techniques and algorithms are emerging as a disruptive technology with the
potential to transform global economies, environments and societies. They have been …

Review on Convolutional Neural Networks (CNN) in vegetation remote sensing

T Kattenborn, J Leitloff, F Schiefer, S Hinz - ISPRS journal of …, 2021 - Elsevier
Identifying and characterizing vascular plants in time and space is required in various
disciplines, eg in forestry, conservation and agriculture. Remote sensing emerged as a key …