Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] Financial fraud: a review of anomaly detection techniques and recent advances
With the rise of technology and the continued economic growth evident in modern society,
acts of fraud have become much more prevalent in the financial industry, costing institutions …
acts of fraud have become much more prevalent in the financial industry, costing institutions …
Machine learning for anomaly detection: A systematic review
Anomaly detection has been used for decades to identify and extract anomalous
components from data. Many techniques have been used to detect anomalies. One of the …
components from data. Many techniques have been used to detect anomalies. One of the …
Outlier detection: Methods, models, and classification
Over the past decade, we have witnessed an enormous amount of research effort dedicated
to the design of efficient outlier detection techniques while taking into consideration …
to the design of efficient outlier detection techniques while taking into consideration …
[HTML][HTML] A review of local outlier factor algorithms for outlier detection in big data streams
Outlier detection is a statistical procedure that aims to find suspicious events or items that
are different from the normal form of a dataset. It has drawn considerable interest in the field …
are different from the normal form of a dataset. It has drawn considerable interest in the field …
Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding
As spacecraft send back increasing amounts of telemetry data, improved anomaly detection
systems are needed to lessen the monitoring burden placed on operations engineers and …
systems are needed to lessen the monitoring burden placed on operations engineers and …
A review of novelty detection
Novelty detection is the task of classifying test data that differ in some respect from the data
that are available during training. This may be seen as “one-class classification”, in which a …
that are available during training. This may be seen as “one-class classification”, in which a …
Anomaly detection, analysis and prediction techniques in iot environment: A systematic literature review
Anomaly detection has attracted considerable attention from the research community in the
past few years due to the advancement of sensor monitoring technologies, low-cost …
past few years due to the advancement of sensor monitoring technologies, low-cost …
Out-of-distribution detection using an ensemble of self supervised leave-out classifiers
As deep learning methods form a critical part in commercially important applications such as
autonomous driving and medical diagnostics, it is important to reliably detect out-of …
autonomous driving and medical diagnostics, it is important to reliably detect out-of …
[KSIĄŻKA][B] An introduction to outlier analysis
CC Aggarwal, CC Aggarwal - 2017 - Springer
Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the data
mining and statistics literature. In most applications, the data is created by one or more …
mining and statistics literature. In most applications, the data is created by one or more …
Network anomaly detection: methods, systems and tools
Network anomaly detection is an important and dynamic research area. Many network
intrusion detection methods and systems (NIDS) have been proposed in the literature. In this …
intrusion detection methods and systems (NIDS) have been proposed in the literature. In this …